Skip to main content

Advertisement

Log in

Prediction of Acid Mine Drainage (AMD) and Metal Release Sources at the Küre Copper Mine Site, Kastamonu, NW Turkey

Vorhersagen zu säurehaltigen Bergbau-Abwässern (AMD) und Quellen für gelöste Metalle im Küre Kupfer Bergbau, Provinz Kastamonu, Nord-West Türkei

Predicción del drenaje ácido de minas y de las fuentes de liberación de metales en el sitio de la mina de cobre Küre, Kastamonu, Noroeste de Turquía

预测Küre铜矿(Kastamonu, NW Turkey)酸性矿山废水及金属离子释放源

  • Technical Article
  • Published:
Mine Water and the Environment Aims and scope Submit manuscript

Abstract

Waste and lithological rocks were subjected to aqueous leaching, acid base accounting (ABA), and net acid generation (NAG) tests, and detailed mineralogical investigations were conducted to predict acid mine drainage (AMD) formation at Turkey’s largest historical copper deposits. The field water chemistry from springs and seeps on the mine site were compared with the static and long term aqueous leaching test results. During the ABA, NAG and long term paste pH tests, ore rich and ore bearing wastes showed a paste pH <4, implying their acid generating nature. The relationship between net neutralization potential and acid producing potential revealed that waste rocks with a low sulfur content were generally low potential sources of AMD. Consistent with the static test results, aqueous leaching tests revealed that greater concentrations of Fe, Cu, Zn, Ni, Pb, Cd, Co and As were released from the wastes rich in pyrite. The test methods all generally agreed that the ore-rich wastes (O, P1C, P1D) were the main sources of AMD and metal contamination in the district.

Zusammenfassung

Mineralhaltiger Abraum und Nebengesteine waren Gegenstand von wässrigen Eluatversuchen, Säure-Basen-Berechnungen (ABA) und Net Generation Tests (NAG) sowie detaillierter mineralogischer Untersuchungen, um Vorhersagen zur Bildung von säurehaltigen Bergbau-Abwässern (AMD) in der größten historischen Kupfer-Lagerstätte der Türkei zu treffen. Die Chemie der Oberflächenwässer von Quellen und der Sickerwässer aus dem Bergbau wurden mit den Ergebnissen der statischen und der Langzeit-Auswaschungstest verglichen. Während der ABA, NAG und der Langzeit-Paste-pH-Tests, zeigten erzreiche und Erz-führende Abfälle einen Paste-pH Wert <4, die auf ihre Säure produzierenden Eigenschaften schließen lassen. Die Beziehung zwischen dem Netto Neutralisationspotential (NNP) und dem Säure produzierenden Potential (APP) offenbarten, dass Abraum mit geringen Schwefelgehalten grundsätzlich eine Quelle mit geringem Potenzial für AMD ist. Übereinstimmend mit den statischen Testergebnissen und den Eluatversuchen in wässrigen Lösungen, zeigten die Ergebnisse dass größere Konzentrationen von FE, Cu, Zn, Ni, Pb, Cd, Co und As in pyritreichen Abfällen freigesetzt wurden. Alle Testmethoden stimmten darin überein, dass die erzreichen Abraummassen (0, P1C, P1D) die Hauptquellen für säurehaltige Abwasser (AMD) und Kontaminationen mit Metallen im Distrikt sind.

Resumen

Los residues y rocas litológicas se sometieron a ensayos de lixiviación acuosa, balance ácido/base (ABA) y de generación neta de ácido (NAG) e investigaciones mineralógicas detalladas se realizaron para predecir la formación de drenaje ácido de mina (AMD) en los mayores depósitos de cobre en Turquía. La química del agua de los manantiales y las filtraciones en el sitio de la mina se compararon con los resultados de la prueba de lixiviación acuosa a largo plazo y estática. En los ensayos ABA, NAG y de medida de pH a largo plazo, residuos ricos en mineral y el mineral mostraron un pH <4, lo que implica su naturaleza generadora de ácido. La relación entre el potencial neto de neutralización (NNP) y el potencial de producción de ácido (APP) mostraron que las rocas residuales con un bajo contenido en azufre fueron bajas fuentes potenciales de AMD. Coincidiendo con los resultados de los ensayos estáticos, los ensayos de lixiviación acuosa mostraron que las mayores concentraciones de Fe, Cu, Zn, Ni, Pb, Cd, Co y As fueron liberadas por los residuos ricos en pirita. Los métodos de ensayos coincidieron en que los residuos ricos en mineral (O, P1C, P1D) eran las principales fuentes de AMD y de contaminación con metales en el distrito.

抽象

采用淋滤、酸碱平衡(ABA)和净产酸能力(NAG)试验及矿物学分析的方法预测土耳其最大历史遗留铜矿废物及岩石的酸性矿山废水(AMD)形成。对比了野外泉水和渗水的水化学特征与静态及长期淋滤水试验结果。在ABA、NAG和长期糊状pH试验期间,富矿和含矿废物的糊状pH小于4,表明其产酸潜质。净中和潜力(NNP)与产酸潜力(APP)关系说明低硫废矿石为低潜力酸性废水(AMD)释放源。与静态试验结果一致,动态淋滤试验揭示富含黄铁矿废矿石的铁、铜、镍、镉、钴和砷淋释放浓度更大。由系列试验获得的一致结论是富矿废矿石(岩样O、P1C和P1D)为主要产酸源(AMD)和金属污染释放源。

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Abrosimova N, Gaskova O, Loshkareva A, Edelev A, Bortnikova S (2015) Assessment of the acid mine drainage potential of waste rocks at the Ak-Sug porphyry Cu–Mo deposit. J Geochem Explor 157:1–14

    Article  Google Scholar 

  • Akabzaa TM, Armah, TEK, Baneong-Yakubo BK (2007) Prediction of acid mine drainage generation potential in selected mines in the Ashanti Metallogenic Belt using static geochemical methods. Environ Geol 52:957–964

    Article  Google Scholar 

  • Akbulut M, Oyman T, Çiçek M, Selby D, Özgenç İ, Tokçaer M (2016) Petrography, mineral chemistry, fluid inclusion microthermometry and Re–Os geochronology of the Küre volcanogenic massive sulfide deposit (Central Pontides, Northern Turkey). Ore Geol Rev 76:1–18

    Article  Google Scholar 

  • Altun Y, Yılmazi H, Şiner İ, Yazar F (2015) The secrets of massive sulfide deposits on mid-ocean ridges and Küre Mağaradoruk copper deposit. MTA Bull Min Res Exp 150:51–65 (in Turkish)

    Google Scholar 

  • Bailey EH, Barnes JW, Kupfer DH (1966) Geology and ore deposit of Küre district, Kastamonu province. CENTO summer training program in geological mapping techniques, Turkey, pp 17–73

    Google Scholar 

  • Balci N, Wayne CS, Mayer B, Mandernack K (2007) Oxygen and sulfur isotope systematics of sulfate by bacterial and abiotic oxidation of pyrite. Geochim Cosmochim Acta 71(15):3796–3811

    Article  Google Scholar 

  • Balci N, Mayer B, Wayne CS, Mandernack K (2012) Oxygen and sulfur isotope systematics of sulfate produced during abiotic and bacterial oxidation of sphalerite and elemental sulfur. Geochim Cosmochim Acta 77:335–351

    Article  Google Scholar 

  • Blodau C (2006) A review of acidity generation and consumption in acidic coal mine lakes and their watersheds. Science Total Environ 369:307–332

    Article  Google Scholar 

  • Bouzahzah H, Benzaazoua M, Bussière B (2013) Acid-generating potential calculation using mineralogical static test: modification of the Paktunc equation. In: Proceedings of 23rd World Mining Congress, Montreal, QC, Canada

  • Bouzahzah H, Benzaazoua M, Bussière B, Plante B (2014) Prediction of acid mine drainage: importance of mineralogy and test protocols for static and kinetic tests. Mine Water Environ 33:54–65

    Article  Google Scholar 

  • Boztuğ D, Debon F, Le Fort P, Yılmaz O (1985) Geochemical characteristics of some plutons from the Kastamonu granitoid belt (northern Anatolia, Turkey). Schweiz Miner Petrog 64(3):389–403

    Google Scholar 

  • Brady KBC, Perry EF, Beam RL, Bisko DC, Gardner MD, Tarantino JM (1994) Evaluation of acid-base accounting to predict the quality of drainage at surface coal mines in Pennsylvania, U.S.A. In: International land reclamation and mine drainage conference and 3rd international conference on the abatement of acidic drainage, 24–29 April 1994, vol 1. SP 06A-94, U.S. Bureau of Mines, Pittsburgh, PA, pp 138–147

  • Brodie MJ, Broughton LM, Robertson A (1991) A conceptual rock classification system for waste management and a laboratory method for ARD prediction from rock piles. Proc 2nd ICARD 3:119–135

    Google Scholar 

  • Çakır Ü (1995) Aşıköy-Toykondu (Küre-Kastamonu) massif sülfid yataklarının jeolojik özellikleri. MTA Bull Min Res Exp 117:29–40 (in Turkish)

    Google Scholar 

  • Celik-Balcı N (2010) Effect of bacterial activity on trace metals release from oxidation of sphalerite at low pH (< 3) and implications for AMD environment. Environ Earth Sci 60(3):485–493

    Article  Google Scholar 

  • Dold D (2017) Acid rock drainage prediction: a critical review. J Geochem Explor 172:120–132

    Article  Google Scholar 

  • Duncan DW, Bruyensteyn A (1979) Determination of the acid production potential of waste materials. In: Metallurgical Society of AIME Annual Meeting, New Orleans, pp A79–29

  • Ferguson KD, Morin KA (1991) The prediction of acid rock drainage—lessons from the database. Proc 2nd ICARD 3:85–106

    Google Scholar 

  • Güner M (1980) Geology and massive sulfide ores of the Küre area, the Pontic ranges, northern Turkey. MTA Bull Min Res Exp 93/94:65–109 (in Turkish)

    Google Scholar 

  • Hageman PL, Seal RR, Diehl SF, Piatak NM, Lowers HA (2015) Evaluation of selected static methods used to estimate element mobility, acid-generating and acid-neutralizing potentials associated with geologically diverse mining wastes. Appl Geochem 57:125–139

    Article  Google Scholar 

  • Jambor JL (2003) Mine-waste mineralogy and mineralogical perspectives of acid–base accounting. In: Jambor JL, Blowes DW, Ritchie AIM (eds) Environmental aspects of mine wastes, vol 31. Mineralogical Association of Canada, Short course, pp 117–146

  • Jambor JL, Dutrizac JE, Raudsepp M (2007) Measured and computed neutralization potentials from static tests of diverse rock types. Environ Geol 52:1019–1031

    Article  Google Scholar 

  • Kuşçu İ, Erler A (2002) Pyrite deformation textures in the deposits of Küre mining district (Kastamonu-Turkey). Turk J Earth Sci 11:205–215

    Google Scholar 

  • Kwong YTJ (1993) Mine site acid rock drainage assessment and prevention; a new challenge for a mining geologist. In: Proceedings of the international mining geology conference, Kalgoorlie, pp 213–217

  • Lapakko KA (2002) Metal mine rock and waste characterization tools: an overview, mining, minerals and sustainable development. Report 67, Acid Drainage Technology Initiative, http://pubs.iied.org/pdfs/G00559.pdf

  • Lawrence RW, Scheske M (1997) A method to calculate the neutralization potential of mining wastes. Environ Geol 32(2):100–106

    Article  Google Scholar 

  • Lawrence RW, Poling GP, Marchant PB (1989) Investigation of predictive techniques for acid mine drainage. Report on DSS Contract No. 23440-7-9178/01-SQ, Energy Mines and Resources, MEND Report 1.16.1(a), Canada

  • Lottermoser BG (2010) Mine wastes: characterization, treatment and environmental impacts, 3rd edn. Springer, Berlin, Heidelberg

    Book  Google Scholar 

  • Miller S, Robertson A, Donahue T (1997) Advances in acid drainage prediction using the net acid generation (NAG) test. In: Proc. 4th international conference on acid rock drainage, Vancouver, BC, pp 533–549

  • Modabberi S, Alizadegan A, Mirnejad H, Esmaeilzadeh E (2013) Prediction of AMD generation potential in mining waste piles, in the sarcheshmeh porphyry copper deposit, Iran. Environ Monit Assess 185:9077–9087

    Article  Google Scholar 

  • Mohammadi Z, Modabberi S, Jafari MR, Ajayebi KS (2015) Comparison of different static methods for assessment of AMD generation potential in mining waste dumps in the Muteh Gold Mines, Iran. Environ Monit Assess 187:374

    Article  Google Scholar 

  • Nordstrom DK, Alpers CN, Ptacek CJ, Blowes DW (2000) Negative pH and extremely acidic mine waters from Iron Mountain, California. Environ Sci Technol 34:254–258

    Article  Google Scholar 

  • Okay AI, Tüysüz O, Satır M, Özkan-Altıner M, Altıner D, Sherlock S, Eren RH (2006) Cretaceous and Triassic subduction-accretion, HP/LT metamorphism and continental growth in the Central Pontides, Turkey. Geol Soc Am Bull 118:1247–1269

    Article  Google Scholar 

  • Okay AI, Sunal G, Tüysüz O, Sherlock S, Keskin M, Kylander-Clark ARC (2014) Low-pressure-high temperature metamorphism during extension in a Jurassic magmatic arc, Central Pontides, Turkey. J Metamorph Geol 32:49–69

    Article  Google Scholar 

  • Okay AI, Altıner D, Kılıç AM (2015) Triassic limestone, turbidite and serpentinite—the cimmeride orogeny in the central pontides. Geol Mag 152(3):460–479

    Article  Google Scholar 

  • Page AL, Miller RH, Keeney DR (1982) Methods of soil analysis, Part 2, chemical and microbiological properties, Agronomy 9, 2 edn. ASA, Madison

    Google Scholar 

  • Perry (1998) Interpretation of acid-base accounting. Coal Mine Drainage Prediction and Pollution Prevention in Pennsylvania, PA Dept of Environmental Protection, Harrisburg, pp 11-1–11-18

    Google Scholar 

  • Plumlee GS (1999) The environmental geology of mineral deposits. In: Plumlee GS, MJ Logsdon (eds) The environmental geochemistry of mineral deposits, Part A. Processes, techniques, and health issues. Reviews in economic geology, vol 6A. Society of Economic Geologists, Littleton, CO, pp 71–116

  • Price WA, Errington J, Koyanagi V (1997) Guidelines for the prediction of acid rock drainage and metal leaching for mines in British Columbia: part I. General procedures and information requirements. In: Proc, 4th ICARD, Natural Resources Canada, Ottawa, vol 1, pp 1–14

  • Sahoo PK, Tripathy S, Panigrahi MK, Equeenuddin Sk-Md (2014) Geochemical characterization of coal and waste rocks from a high sulfur bearing coalfield, India: implication for acid and metal generation. J Geochem Explor 145:135–147

    Article  Google Scholar 

  • Sanliyuksel D, Balci N, Baba A, Alper (2016) Generation of acid mine lakes associated with abandoned coal mines in northwest Turkey. Arch Environ Contam Toxicol 70:757–782

    Article  Google Scholar 

  • Schippers A (2004) Biogeochemistry of metal sulfide oxidation in mining environments, sediments and soils. In: Amend JP, Edwards KJ, Lyons TW (eds) Sulfur biogeochemistry—past and present, vol 379. Geological Society of America, Boulder, pp 49–62

    Google Scholar 

  • Shu WS, Ye ZH, Lan CY, Zhang ZQ, Wong MH (2001) Acidification of lead/zinc mine tailings and its effect on heavy metal mobility. Environ Int 26:389–394

    Article  Google Scholar 

  • Skousen J, Simmons J, McDonald LM, Ziemkiewicz P (2002) Acid–base accounting to predict post-mining drainage quality on surface mines. J Environ Qual 31:2034–2044

    Article  Google Scholar 

  • Smart R, Skinner WM, Levay G, Gerson AR, Thomas JE, Sobieraj H, Schumann R, Weisener CG, Weber PA, Miller SD, Stewart WA (2002) ARD test handbook: project P387A prediction and kinetic control of acid mine draiange: AMIRA. International Ltd, Ian Wark Research Institute

  • Sobek AA, Schuller WA, Freeman JR, Smith RM (1978) Field and laboratory methods applicable to overburdens and mine soils. Rept EPA-600/z-78-054, US Environmental Protection Agency, Cincinnati

  • Soregaroli BA, Lawrence RW (1998) Update on waste characterisation studies. In: Proc. mine design, operations and closure conference, Polson, MT, USA

  • USA, EPA (US Environmental Protection Agency) (2015) (http://fdsys.gpo.gov/fdsys/search/home.action) and on Regulations.gov (http://www.regulations.gov) in Docket No. EPA-HQ-OW-2016-0012

  • Ustaömer T, Robertson AHF (1994) Late Paleozoic marginal basin and subduction-accretion: the Paleotethyan Küre Complex, Central Pontides, northern Turkey. J Geol Soc London 151:291–305

    Article  Google Scholar 

  • Weber PA, Stewart WA, Skinner WM, Weisener CG, Thomas JE, Smart RSC (2004) Geochemical effects of oxidation products and framboidal pyrite oxidation in acid mine drainage prediction techniques. Appl Geochem 19:1953–1974

    Article  Google Scholar 

  • Wedepohl KN (1995) The composition of the continental crust. Geochim Cosmochim Acta 59(7):1217–1232

    Article  Google Scholar 

  • Weisener CG, Weber PA (2010) Preferential oxidation of pyrite as a function of morphology and relict texture. N Z J Geol Geophys 53(2–3):167–176

    Article  Google Scholar 

Download references

Acknowledgements

This project was supported by the Istanbul Technical University Scientific Research Division Grant to NB (37260). We thank Dr. Paul Schroeder for his valuable comments on the XRD data and Dr. Aral Okay for kindly providing sandstone samples from the Çağlayan formation (i51, i52; Okay et al. 2014, 2015).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nurgul Balci.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 15 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Balci, N., Demirel, C. Prediction of Acid Mine Drainage (AMD) and Metal Release Sources at the Küre Copper Mine Site, Kastamonu, NW Turkey. Mine Water Environ 37, 56–74 (2018). https://doi.org/10.1007/s10230-017-0470-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10230-017-0470-4

Keywords

Navigation