Skip to main content
Log in

Prediction of acid mine drainage generation potential of various lithologies using static tests: Etili coal mine (NW Turkey) as a case study

  • Published:
Environmental Monitoring and Assessment Aims and scope Submit manuscript

Abstract

The Etili neighborhood in Can County (northwestern Turkey) has large reserves of coal and has been the site of many small- to medium-scale mining operations since the 1980s. Some of these have ceased working while others continue to operate. Once activities cease, the mining facilities and fields are usually abandoned without rehabilitation. The most significant environmental problem is acid mine drainage (AMD). This study was carried out to determine the acid generation potential of various lithological units in the Etili coal mine using static test methods. Seventeen samples were selected from areas with high acidic water concentrations: from different alteration zones belonging to volcanic rocks, from sedimentary rocks, and from coals and mine wastes. Static tests (paste pH, standard acid–base accounting, and net acid generation tests) were performed on these samples. The consistency of the static test results showed that oxidation of sulfide minerals, especially pyrite—which is widely found not only in the alteration zones of volcanic rocks but also in the coals and mine wastes—is the main factor controlling the generation of AMD in this mine. Lack of carbonate minerals in the region also increases the occurrence of AMD.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  • Akabzaa, T. M., Armah, T. E. K., & Baneong-Yakubo, B. K. (2007). Prediction of acid mine drainage generation potential in selected mines in the Ashanti Metallogenic Belt using static geochemical methods. Environmental Geology, 52(5), 957–964.

    Article  CAS  Google Scholar 

  • Banerjee, D. (2014). Acid drainage potential from coal mine wastes: environmental assessment through static and kinetic tests. International Journal of Environmental Science and Technology, 11, 1365–1378.

    Article  CAS  Google Scholar 

  • Benzaazoua, M., Bussiere, B., Dagenais, A. M., & Archambault, M. (2004). Kinetic tests comparison and interpretation for prediction of the Joutel tailings acid generation potential. Environmental Geology, 46, 1086–1101.

    Article  CAS  Google Scholar 

  • Brough, C. P., Warrender, R., Bowell, R. J., Barnes, A., & Parbhakar-Fox, A. (2013). The process mineralogy of mine wastes. Minerals Engineering, 52, 125–135.

    Article  CAS  Google Scholar 

  • Bussiere, B., Benzaazoua, M., Aubertin, M., & Mbonimpa, M. (2004). A laboratory study of covers with capillary barrier effects made of low sulphide tailings to prevent acid mine drainage. Environmental Geology, 45(5), 609–622.

    Article  CAS  Google Scholar 

  • Charles, J. C., Barnes, A., Declerq, J., Warrender, R., Brough, C., & Bowell, R. J. (2015). Difficulties of interpretation of NAG test results on net neutralizing mine wastes: initial observations of elevated pH conditions and theory of CO2 disequilibrium. Proceedings of the 10th International Conference on Acid Rock Drainage and IMWA Annual Conference. Santiago, Chile. April 21–24, IMWA 2015, 1–10.

  • DiLoreto, Z. A., Weber, P. A., & Weisener, C. G. (2016). Solid phase characterization and metal deportment in a mussel shell bioreactor for the treatment of AMD, Stockton Coal Mine, New Zealand. Applied Geochemistry, 67, 133–143.

    Article  CAS  Google Scholar 

  • Ercan, T., Satır, M., Sevin, D., & Turkecan, A. (1995). Interpretation of new chemical, isotopic and radiometric data on Cenozoic volcanic rocks of Western Anatolia. Direct Mineral Research Exploration Bulletin, 119, 103–112.

    Google Scholar 

  • Ferguson, K. D., & Morin, K. A. (1991). The prediction of acid rock drainage—lessons from the data base. Proceedings of the 2nd International Conference on Acid Rock Drainage. Montreal, QC, Canada. ICARD 1991, 83–106.

  • Gunduz, O., & Baba, A. (2008). Fate of acidic mining lakes in Can lignite district, Turkey. Proceedings of 36th International Association of Hydrogeologists Congress. Toyama, Japan. IAH 2008, 1–7.

  • Gurdal, G. (2011). Abundances and modes of occurrence of trace elements in the Çan coals (Miocene), Çanakkale-Turkey. International Journal of Coal Geology, 87, 157–173.

    Article  Google Scholar 

  • Gurdal, G., & Bozcu, M. (2011). Petrographic characteristic and depositional environment of Miocene Çan coals, Çanakkale-Turkey. International Journal of Coal Geology, 85, 143–160.

    Article  CAS  Google Scholar 

  • Hochella, M. F., Moore, J. N., Golla, U., & Outnis, A. (1999). A TEM study of samples from acid mine drainage systems: metal-mineral associations with implications for transport. Geochimica et Cosmochimica Acta, 63, 3395–3406.

    Article  CAS  Google Scholar 

  • Hughes, J., Craw, D., Peake, B., Lindsay, P., & Weber, P. (2007). Environmental characterization of coal mine waste rock in the field: an example from New Zealand. Environmental Geology, 52, 1501–1509.

    Article  CAS  Google Scholar 

  • Hutt, N. M. & Morin, K. A. (1999). The international static database. Proceedings of Sudbury 99, Mining and the Environment II Conference. Sudbury, Canada. 13–15 September, Volume 1, 363–370.

  • Jambor, J. L. (2003). Mine-waste mineralogy and mineralogical perspectives of acid–base accounting. In J. L. Jambor, D. W. Blowes, & A. I. M. Ritchie (Eds.), Environmental aspects of mine wastes (pp. 117–145). Nepean: Mineralogical Association of Canada.

    Google Scholar 

  • Jambor, J. L., Dutrizac, J. E., Groat, L. A., & Raudsepp, M. (2002). Static tests of neutralization potentials of silicate and aluminosilicate minerals. Environmental Geology, 43, 1–17.

    Article  CAS  Google Scholar 

  • Kaartinen, T., & Wahlström, M. (2009). Development of a European standard for the determination of acid potential and neutralization potential of sulfide waste. Proceedings of 8th International Conference on Acid Rock Drainage and Securing The Future: Mining, Metals & The Environment in A Sustainable Society. Skelleftea, Sweden. 22–26 June, ICARD 2009, 235–241.

  • Lapakko, K. A. (2002). Metal mine rock and waste characterization tools: an overview. Mining, Minerals and Sustainable Development, 67, 1–31.

    Google Scholar 

  • Lawrence, R. W. (1990). Prediction of the behavior of mining and processing wastes in the environment. In F. Doyle (Ed.), Proceedings of Western Regional Symposium on Mining and Mineral Processing Wastes, (pp. 115–121). Littleton: Society for Mining, Metallurgy and Exploration

  • Lawrence, R. W., & Scheske, M. (1997). A method to calculate the neutralization potential of mining wastes. Environmental Geology, 32, 100–106.

    Article  CAS  Google Scholar 

  • Lottermoser, B. G. (2010). Mine wastes: characterization, treatment, and environmental impacts. Heidelberg: Springer-Verlag.

    Book  Google Scholar 

  • Mendez-Ortiz, B. A., Carrillo-Chávez, A., & Monroy-Fernández, M. G. (2007). Acid rock drainage and metal leaching from mine waste material (tailings) of a Pb-Zn-Ag skarn deposit: environmental assessment through static and kinetic laboratory tests. Revista Mexicana de Ciencias Geológicas, 24, 161–169.

    Google Scholar 

  • Miller, S. (1998). Prediction predicting acid drainage groundwork. Australian Minerals & Energy Environment Foundation. https://www.dlsweb.rmit.edu.au/conenv/envi1128/Groundwork%20website/publicat/gw/grnd998/gpredict.htm. Accessed 24 June 2016.

  • Miller, P. C. (2000). Potential methods for reducing cyanide consumption for bacterial oxidation residues. International document release, BacTech Mining Corporation, 17 November 2000.

  • Miller, S. D., Jeffery, J. J., & Murray, G. S. C. (1990). Identification and management of acid generating mine wastes—procedures and practices in South-East Asia and the Pacific Regions. In J. W. Gadsby, J. A. Malick, & S. J. Day (Eds.), Acid mine drainage designing for closure (pp. 1–11). Vancouver: BiTech Publishers.

    Google Scholar 

  • Miller, S. D., Jeffery, J. J., & Wong, J. W. C. (1991). Use and misuse of the acid base account for AMD prediction. Proceedings of the 2nd International Conference on Acid Rock Drainage. Montreal, QC, Canada. ICARD 1991, 489–506.

  • Miller, S., Robertson, A., & Donohue, T. (1997). Advances in acid drainage prediction using the net acid generation (NAG) test. Proceedings of 4th International Conference on Acid Rock Drainage. Vancouver, Canada. ICARD 1997, 535–549.

  • Mills, C. (2007). Acid–Base Accounting (ABA) test procedures. http://technology.infomine.com/enviromine/ard/Acid–base%20Accounting/acidbase.htm. Accessed 24 June 2016.

  • Mitchell, P. (2000). Prediction, prevention, control and treatment of acid rock drainage. In A. Warhurst & L. Noronha (Eds.), Environmental policy in mining: corporate strategy and planning for closure (pp. 117–143). Boca Raton: Lewis Publishers.

    Google Scholar 

  • Morin, K. A., & Hutt, N. M. (1997). Environmental geochemistry of mine site drainage: practical and case studies. Canada: MDAG Publishing.

    Google Scholar 

  • Morin, K. A., & Hutt, N. M. (2001). Prediction of water chemistry in mine lakes: the mine wall technique. Ecological Engineering, 17, 125–132.

    Article  Google Scholar 

  • Morin, K. A., & Hutt, N. M. (2006). Case studies of costs and longevities of alkali-based water-treatment plants for ARD. Proceedings of the 7th International Conference on Acid Rock Drainage. St Louis, USA. ICARD 2006, 1333–1344.

  • Okumusoglu, D., & Gunduz, O. (2013). Hydrochemical status of an acidic mining lake in Can-Canakkale, Turkey. Water Environment Research, 85(7), 604–620.

    Article  Google Scholar 

  • Paktunc, A. D. (1999). Mineralogical constraints on the determination of neutralization potential and prediction of acid mine drainage. Environmental Geology, 39(2), 103–112.

    Article  CAS  Google Scholar 

  • Price, W.A. (2009). Prediction manual for drainage chemistry from sulphidic geologic materials. MEND Report 1.20.1. December. http://www.fs.usda.gov/Internet/FSE_DOCUMENTS/stelprdb5336546.pdf. Accessed 24 June 2016.

  • Price W. A., & Errington, J. C. (1998). Guidelines for metal leaching and acid rock drainage at minesites in British Columbia, Ministry of Energy and Mines. In mine drainage and surface mine reclamation, 1: mine water and mine waste. April 19–21. Pittsburgh, USA.

  • Price, W. A., Morin, K., & Hutt, N. (1997). Guidelines for the prediction of acid rock drainage and metal leaching for mines in British Columbia: part II—recommended procedures for static and kinetic testing. Proceedings of 4th International Conference on Acid Rock Drainage. Vancouver, Canada. ICARD 1997, 15–30.

  • Ritcey, G. M. (1989). Tailings management: problems and solutions in the mining industry. Amsterdam: Elsevier Science Publishers.

    Google Scholar 

  • Sanliyuksel Yucel, D., & Baba, A. (2013). Geochemical characterization of acid mine lakes and their effect on the environment, NW of Turkey. Archives of Environmental Contamination and Toxicology, 64(3), 357–376.

    Article  Google Scholar 

  • Sanliyuksel Yucel, D., & Yucel, M. A. (2016). Determining hydrochemical characteristics of mine lakes from abandoned coal mines and 3D modeling of them using unmanned aerial vehicle. Pamukkale University Journal of Engineering Sciences. doi:10.5505/pajes.2016.37431.

    Google Scholar 

  • Sanliyuksel Yucel, D., Yucel, M. A., & Baba, A. (2014). Change detection and visualization of acid mine lakes using time series satellite image data in Geographic Information Systems (GIS): Can (Canakkale) County, NW Turkey. Environmental Earth Sciences, 72(11), 4311–4323.

    Article  Google Scholar 

  • Sanliyuksel Yucel, D., Balci, N., & Baba, A. (2016). Generation of acid mine lakes associated with abandoned coal mines in NW Turkey. Archives of Environmental Contamination and Toxicology, 70(4), 757–782.

    Article  CAS  Google Scholar 

  • Sengupta, M. (1993). Environmental impact of mining: monitoring, restoration and control. Boca Raton: Lewis Publishers.

    Google Scholar 

  • Siyako, M., Burkan, K. A., & Okay, A. I. (1989). Tertiary geology and hydrocarbon potential of the Biga and Gelibolu Peninsulas. Turkish Association of Petroleum Geologists Bulletin, 1, 183–199.

    Google Scholar 

  • SKKY (2004). Water pollution control regulation. Official Gazette dated 31.12.2004 and numbered 25687, Ankara, Turkey.

  • Skousen, J. (1995). Douglas abandoned mine land project: description of an innovative acid mine drainage treatment system. Green Lands, 25(1), 29–38.

    Google Scholar 

  • Skousen, J., Perry, E., Leavitt, B., Sames, G., Chisholm, W., Cecil, C. B., & Hammack, R. (2000). Static tests for coal mining acid mine drainage prediction in the eastern U.S. In R. L. P. Kleinmann (Ed.), Prediction of water quality at surface coal mines (pp. 73–98). West Virginia: The National Mine Land Reclamation Center.

    Google Scholar 

  • Skousen, J., Simmons, J., McDonald, L. M., & Ziemkiewicz, P. (2002). Acid–base accounting to predict post-mining drainage quality on surface mines. Journal of Environmental Quality, 31, 2034–2044.

    Article  CAS  Google Scholar 

  • Smith, A., Robertson, A., Barton-Bridges, J., & Hutchison, I. P. G. (1992). Prediction of acid generation potential. In I. P. G. Hutchison & R. D. Ellison (Eds.), Mine waste management (pp. 123–199). Boca Raton: Lewis Publishers.

    Google Scholar 

  • Sobek, A. A., Schuller, W. A., Freeman, J. R., & Smith, R. M. (1978). Field and laboratory methods applicable to overburdens and mine soils. Washington DC: EPA.

    Google Scholar 

  • Stewart, W., Miller, S., Smart, R., Gerson, A., Thomas, J. E., Skinner, W., Levay, G., & Schumann, R. (2003). Evaluation of the net acid generation (NAG) test for assessing the acid generating capacity of sulphide minerals. Proceedings of 6th International Conference on Acid Rock Drainage. Cairns, Queensland, Australia. ICARD 2003, 617–625.

  • Stewart, W.A., Miller, S.D., & Smart, R. (2006). Advances in acid rock drainage (ARD) characterization of mine wastes. Proceedings of the 7th International Conference on Acid Rock Drainage. St Louis, USA. ICARD 2006, 2098–2119.

  • Tran, A. B., Miller, S., Williams, D. J., Fines, P., & Wilson, G. W. (2003). Geochemical and mineralogical characterization of two contrasting waste rock dumps: the INAP waste rock dump characterization project. Proceedings of 6th International Conference on Acid Rock Drainage. Cairns, Qld., Australia. ICARD 2003, 939–948.

  • Tuncali, E., Ciftci, B., Yavuz, N., Toprak, S., Koker, A., Aycik, H., Gencer, Z., & Sahin, N. (2002). Chemical and technological properties of Turkish tertiary coals. Ankara: Directorate of Mineral Research and Exploration’s Publication.

    Google Scholar 

  • U.S. EPA. (1994). Technical document of acid mine drainage prediction. Report No: EPA530-R-94-036, Office of Solid Waste. http://www3.epa.gov/epawaste/nonhaz/industrial/special/mining/techdocs/amd.pdf. Accessed 24 June 2016.

  • Usher, B. H., & Vermeulen, P. D. (2006). The impacts of coal and gold mining on the associated water sources in South Africa. In Y. Xu & B. Usher (Eds.), Groundwater pollution in Africa (pp. 301–314). Balkema: Taylor & Francis.

    Chapter  Google Scholar 

  • Villeneuve, M., Bussiere, B., Benzaazoua, M., Aubertin, M., & Monroy, M. (2003). The influence of kinetic test type on the geochemical response of low acid generating potential tailings. http://www.polymtl.ca/enviro-geremi/pdf/articles/vilikt(erratum).pdf. Accessed 24 June 2016.

  • Weber, P. A., Stewart, W. A., Skinner, W. M., Weisener, C. G., Thomas, J. E., & Smart, R. S. C. (2004). Geochemical effects of oxidation products and framboidal pyrite oxidation in acid mine drainage prediction techniques. Applied Geochemistry, 19, 1953–1974.

    Article  CAS  Google Scholar 

  • Weber, P. A., Hughes, J. B., Conner, L. B., Lindsay, P., & Smart, R. (2006a). Short-term acid rock drainage characteristics determined by paste pH and kinetic NAG testing: Cypress prospect, New Zealand. Proceedings of the 7th International Conference on Acid Rock Drainage. St Louis, USA. ICARD 2006, 2289–2295.

  • Weber, P. A., Skinner, W., Hughes, J. B., Lindsay, P., & Moore, T. A. (2006a). Source of Ni in coal mine acid rock drainage, West Coast, New Zealand. International Journal of Coal Geology, 67, 214–220.

    Article  CAS  Google Scholar 

  • White, W. W., Lapakko, K. A., & Cox, R. L. (1999). Static-test methods most commonly used to predict acid-mine drainage: practical guidelines and interpretation. In G. S. Plumlee & M. S. Logsdon (Eds.), The environmental geochemistry of mineral deposits, part A: processes, techniques and health issues (pp. 325–338). Littleton: Society of Economic Geologists.

    Google Scholar 

  • Williams, D. J., Jeffery, J., Gilbert, L., Wilson, G. W., Panidis, C., & Perry, B. (2003). A review of the acid rock drainage potential and hydrological implications of selectively-placed waste rock at a gold mine in NSW, Australia. Proceedings of 6th International Conference on Acid Rock Drainage. Cairns, Qld., Australia. 949–956).

  • Yeheyis, M. B., Shang, J. Q., & Yanful, E. K. (2009). Long-term evaluation of coal fly ash and mine tailings co-placement: a site-specific study. Journal of Environmental Management, 91, 237–244.

    Article  Google Scholar 

  • Yigit, O. (2009). Mineral deposits of Turkey in relation to Tethyan Metallogeny: implications for future mineral exploration. Economic Geology, 104, 19–51.

    Article  CAS  Google Scholar 

  • Younger, P. L., Banwart, S. A., & Hedin, R. S. (2002). Mine water: hydrology, pollution, remediation. Dorhrecht: Kluwer, Academic.

    Book  Google Scholar 

  • Yucel, M. A., & Turan, R. Y. (2016). Areal change detection and 3D modeling of mine lakes using high-resolution unmanned aerial vehicle images. Arabian Journal for Science and Engineering. doi:10.1007/s13369-016-2182-7.

    Google Scholar 

Download references

Acknowledgments

The authors would like to thank Dr. Mehmet Karadeniz for his support during laboratory studies and helpful comments. The authors are also grateful to the reviewers for their constructive suggestions. This study was funded by the Teck Mining Company.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Deniz Sanliyuksel Yucel.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yucel, D.S., Baba, A. Prediction of acid mine drainage generation potential of various lithologies using static tests: Etili coal mine (NW Turkey) as a case study. Environ Monit Assess 188, 473 (2016). https://doi.org/10.1007/s10661-016-5462-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10661-016-5462-5

Keywords

Navigation