Skip to main content

Advertisement

Log in

Acid mine drainage potential of waste rocks in a gold mine (Thailand): application of a weathering cell test and multivariate statistical analysis

  • Original Paper
  • Published:
Environmental Geochemistry and Health Aims and scope Submit manuscript

Abstract

In the process of gold mining, large amounts of broken waste rocks are produced and left at the surface under atmospheric conditions, which may generate acid mine drainage (AMD). This study aimed to predict the AMD generation potential and determine the concentrations of potentially toxic metals at three dump sites for a gold mine in Thailand. The AMD generation potentials of waste rock samples collected from the oxide, transition and sulfide dump sites was determined using the weathering cell test. The kinetic test had a 7-d cycle and was run for ~ 21 cycles; the effluent pH, conductivity, redox potential and levels of sulfate, and major and trace metals (i.e., As, Co, Cu, Fe, Mn, Pb and Zn) present in each cycle were measured. Some samples generated significant amounts of AMD, especially the massive sulfide samples from the transition and sulfide dump sites. The effluent water pH in the oxide and sulfide dump sites was neutral to slightly alkaline (pH ~ 6–9), while it was acidic to neutral (pH ~ 3–7) in the transition dump site. The transition dump site samples generated significantly higher acidity and sulfate levels than those from the oxide and sulfide dump sites. Furthermore, some waste rock samples, including the massive sulfide from the transition dump site, released relatively high amounts of heavy metals; in addition, sulfate reached levels (9.48 mg kg−1 of waste rock) high enough to pose a risk to ecosystems. The long-term acid generation suggested that some waste rock samples from sulfide dump site and transition dump site will continue to generate acid for long periods. Based on data from the weathering cell test and multivariate statistical analysis, the transition dump site potentially generates a lower pH leachate than other waste rock dumps.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Akcil, A., & Koldas, S. (2006). Acid mine drainage (AMD): Causes, treatment and case studies. Journal of Cleaner Production, 14, 1139–1145. https://doi.org/10.1016/j.jclepro.2004.09.006

    Article  Google Scholar 

  • American Society for Testing and Material (ASTM). (2003). Standard test for specific gravity of soil solids by water pycnometer: D 854-00. Annual Book of ASTM Standards, ASTM.

  • American Society for Testing and Materials (ASTM). (2011). Standard test methods for acidity or alkalinity of water: D 1067-11. Annual Book of ASTM Standards, ASTM.

  • Assawincharoenkij, T. (2016). Mineralogical and geochemical characteristic of waste rocks and tailing from gold mine in Northeastern Thailand: Application for environmental impact protection [dissertation]. Chulalongkorn University.

  • Assawincharoenkij, T., Hauzenberger, C., Ettinger, K., & Sutthirat, C. (2017). Mineralogical and geochemical characterization of waste rocks from a gold mine in northeastern Thailand: application for environmental impact protection. Environmental Science and Pollution Research, 25(4), 3488–3500. https://doi.org/10.1007/s11356-017-0731-6

    Article  CAS  Google Scholar 

  • Benzaazoua, M., Bussiere, B., Dagenais, A. M., & Archambault, M. (2004). Kinetic tests comparison and interpretation for prediction of Joutel tailing acid generation potential. Environmental Geology, 46, 1086–1101. https://doi.org/10.1007/s00254-004-1113-1

    Article  CAS  Google Scholar 

  • Benzaazoua, M., Bussiere, B., Dagenais, M. A., & Archambualt, M. (2001). Comparison of kinetic tests for sulfide mine tailings. Tailings and Mine Waste, 01, 263–272.

    Google Scholar 

  • Benzaazoua, M., Bussiere, B., Demers, I., Aubertin, M., Fried, E., & Blier, A. (2008). Integrated mine tailing management by combining environmental desulfurization and cemented paste backfill: Application to mine Doyon, Quebec, Canada. Minerals Engineering, 21(4), 330–340. https://doi.org/10.1016/j.mineng.2007.11.012

    Article  CAS  Google Scholar 

  • Bhattacharya, P., Ahmed, K. M., Hasan, M. A., Broms, S., Fogelström, J., Jacks, G., Sracek, O., Brömssen, M., & Routh, J. (2006). Mobility of arsenic in groundwater in a part of Brahmanbaria district, NE Bangladesh. Managing Arsenic in the Environment: from Soils to Human Health. CSIRO Publishing, Collingwood, Australia. 95–115.

  • Blowes, D. W., Ptacek, C. J., Jambor, J. L., & Weisener, C. G. (2003). The geochemistry of acid mine drainage. Environmental Geochemistry, 9, 149–204. https://doi.org/10.1016/B0-08-043751-6/09137-4

    Article  Google Scholar 

  • Bolan, N. S., Kirkham, M. B., & Ok, Y. S. (Eds.). (2017). Spoil to soil: Mine site rehabilitation and revegetation. CRC Press.

    Google Scholar 

  • Boonsrang, A., Chotpantarat, S., & Sutthirat, C. (2017). Factors controlling the release of metals and a metalloid from the tailings of a gold mine in Thailand. Geological Society of London Collection, 18, 109–119. https://doi.org/10.6084/m9.figshare.c.3840154.v1

    Article  Google Scholar 

  • Boonkaewwan, S., Sonthiphand, P., & Chotpantarat, S. (2021). Mechanisms of arsenic contamination associated with hydrochemical characteristics in coastal alluvial aquifers using multivariate statistical technique and hydrogeochemical modeling: A case study in Rayong province, eastern Thailand. Environmental Geochemistry and Health, 43(1), 537–566.

    Article  CAS  Google Scholar 

  • Bourg, A., & Loch, J. G. (1995). Mobilization of heavy metals as affected by pH and redox conditions. In Biogeodynamics of pollutants in soils and sediments (pp. 87–102). Springer.

  • Bouzahzah, H., Benzaazoua, M., & Bussiet, B. (2010). A modified protocol of the ASTM normalized humidity cell test as laboratory weathering method of concentrator tailings. In Proceeding of IMWA 2010, Mine Water and Innovative Thinking, 5–9 September 2010, Sydney, NS, 15–18.

  • Bouzahzah, H., Benzaazoua, M., Bussiere, B., & Plante, B. (2014). Prediction of acid mine drainage: Importance of mineralogy and the test protocols for static and kinetic tests. Mine Water and the Environment, 33, 54–65. https://doi.org/10.1007/s10230-013-0249-1

    Article  CAS  Google Scholar 

  • Carbone, C., Dinelli, E., Marescotti, P., Gasparotto, G., & Lucchetti, G. (2013). The role of AMD secondary minerals in controlling environmental pollution: Indications from bulk leaching tests. Journal of Geochemical Exploration, 132, 188–200.

    Article  CAS  Google Scholar 

  • Changul, C., Sutthirat, C., Padmanahban, G., & Tongcumpou, C. (2010a). Assessing the acidic potential of waste rock in the Akara gold mine, Thailand. Environmental Earth Sciences, 60, 1065–1071. https://doi.org/10.1007/s12665-009-0251-x

    Article  CAS  Google Scholar 

  • Changul, C., Sutthirat, C., Padmanahban, G., & Tongcumpou, C. (2010b). Chemical characteristics and acid drainage assessment of mine tailing from Akara gold mine in Thailand. Environmental Earth Sciences, 60, 1583–1595. https://doi.org/10.1007/s12665-009-0293-0

    Article  CAS  Google Scholar 

  • Chopard, A., Benzaazoua, M., Bouzahzah, H., Plante, B., & Marion, P. (2017a). A contribution to improve the calculation of the acid generating potential of mining wastes. Chemosphere, 175, 97–107. https://doi.org/10.1007/s12665-009-0293-0

    Article  CAS  Google Scholar 

  • Chopard, A., Plante, B., Benzaazoua, M., Bouzahzah, H., & Marion, P. (2017b). Geochemical investigation of the galvanic effects during oxidation of pyrite and base-metals sulfides. Chemosphere, 166, 281–291. https://doi.org/10.1016/j.chemosphere.2016.09.129

    Article  CAS  Google Scholar 

  • Chotpantarat, S. (2011). A review of static tests and recent studies. American Journal of Applied Sciences, 8(4), 400–406. https://doi.org/10.3844/ajassp.2011.400.406

    Article  CAS  Google Scholar 

  • Chotpantarat, S., & Amasvata, C. (2020). Influence of pH on transport of arsenate (As5+) through different reactive media using column experiments and transport modeling. Scientific Reports, 10(1), 3512.

    Article  CAS  Google Scholar 

  • Chotpantarat, S. & Kiatvarangkul, N. (2018). Facilitated transport of cadmium with montmorillonite KSF colloids under different pH conditions in water-saturated sand columns: Experiment and transport modeling. Water Research, 146, 216–231.

    Article  CAS  Google Scholar 

  • Chotpantarat, S., & Thamrongsrisakul, J. (2021). Natural and anthropogenic factors influencing hydrochemical characteristics and heavy metals in groundwater surrounding a gold mine, Thailand. Journal of Asian Earth Sciences, 211, 104692.

    Article  Google Scholar 

  • Chotpantarat, S., Limpakanwech, C., & Sutthirat, C. (2011a). Effects of soil water characteristic curves on simulation of nitrate vertical transport in a Thai agricultural soil. Sustainable Environmental Research, 21(3), 187–193.

    CAS  Google Scholar 

  • Chotpantarat, S., Ong, S.K., Sutthirat, C., & Osathaphan, K. (2011b). Effect of pH on sorption and transport of Pb2+, Mn2+, Zn2+, and Ni2+ through lateritic soil: Column experiments and transport modeling. Journal of Environmental Sciences, 23(4), 640–648.

    Article  CAS  Google Scholar 

  • Chotpantarat, S., Ong, S. K., Sutthirat, C., & Osathaphan, K. (2012). Sorption and transport of Pb2+, Ni2+, Mn2+, and Zn2+ under single, binary and multi-metal systems through lateritic soil: Column experiments. Journal of Hazardous Materials, 190, 391–396.

    Article  Google Scholar 

  • Chotpantarat, S., Chunhacherdchai, L., & Tongcumpou, C. (2015). Effects of humic acid amendment on the mobility of heavy metals (Co, Cu, Cr, Mn, Ni, Pb, Zn) in gold mine tailings in Thailand. Arabian Journal of Geosciences, 8, 7589–7600.

    Article  CAS  Google Scholar 

  • Chotpantarat, S., Parkchai, T., & Wisitthammasri, W. (2020). Multivariate statistical analysis of hydrochemical data and stable isotopes of groundwater contaminated with nitrate at Huay Sai Royal Development Study Center and adjacent areas in Phetchaburi Province, Thailand. Water, 12(4), 1127.

    Article  CAS  Google Scholar 

  • Cornell, R., & Schwertmann, U. (2003). The iron oxides: Structure, properties, reactions, occurences and uses. Wiley.

    Book  Google Scholar 

  • Coussy, S., Benzaazoua, M., Blanc, D., Moszkowicz, P., & Bussiere, B. (2012). Assessment of arsenic immobilization in synthetically prepared cemented paste backfill specimens. Journal of Environmental Management, 93, 10–21. https://doi.org/10.1016/j.jenvman.2011.08.015

    Article  CAS  Google Scholar 

  • Craw, D., Windle, S. J., & Angus, P. V. (1999). Gold mineralization without quartz veins in a ductile-brittle shear zone, Macraes Mine, Otago Schist, New Zealand. Mineralium Deposita, 34, 382–394. https://doi.org/10.1007/s001260050211

    Article  CAS  Google Scholar 

  • Cruz, R., Mendez, A. B., Monroy, M., & Gonzalez, I. (2001). Cyclic voltammetry applied to evaluate reactivity in sulfide mining residues. Applied Geochemistry, 16, 1631–1640. https://doi.org/10.1016/S0883-2927(01)00035-X

    Article  CAS  Google Scholar 

  • Da, P. S., Musu, E., Cidu, R., Frau, F., & Lattanzi, P. (2009). Release of toxic elements from rocks and mine wastes at the Furtei gold mine (Sardinia, Italy). Journal of Geochemical Exploration, 100(2–3), 142–152. https://doi.org/10.1016/j.gexplo.2008.06.006

    Article  CAS  Google Scholar 

  • Dold, B. (2014). Evolution of acid mine drainage formation in sulphidic mine tailings. Minerals, 4(3), 621–641. https://doi.org/10.3390/min4030621

    Article  CAS  Google Scholar 

  • Dutta, B. K., Khanra, S., & Mallick, D. (2009). Leaching of elements from coal fly ash: Assessment of its potential for use in filling abandoned coal mines. Fuel, 88, 1314–1323. https://doi.org/10.1016/j.fuel.2009.01.005

    Article  CAS  Google Scholar 

  • Eary, L., & Williamson, M. (2006). Simulations of the neutralizing capacity of silicate rocks in acid mine drainage environments. Journal American Society of Mining and Reclamation., 2, 564–577. https://doi.org/10.21000/JASMR06020564

    Article  Google Scholar 

  • ERIC, (2012). The final report: Survey of distribution and sources of heavy metals contamination in Phu Thap Fah Gold Mine Deposit, Khao Luang, Wang Sapung, Loei Province, Bangkok, Thailand (in Thai), Environmental Research Institute, Chulalongkorn University.

  • Ferguson, K. D., K. A. & Morin. (1991). The prediction of acid rock drainage: Lessons from the database. In Second International Conference on the Abatement of Acidic Drainage. Conference Proceedings, 1(4), September 16, 17, and 18, 1991, Montreal, Canada.

  • Department of Mineral Resources. (2008). Geochemical in Gold mine area Tumbon Kaoluang, Ampher Wang sa phung, Leoi province. Report of Department of Mineral Resources 21/2008.

  • Giri, S., & Singh, A. K. (2019). Assessment of metal pollution in groundwater using a novel multivariate metal pollution index in the mining areas of the Singbhum copper belt. Environmental Earth Sciences. https://doi.org/10.1007/s12665-019-8200-9

    Article  Google Scholar 

  • Gray, N. F. (1998). Acid mine drainage composition and the implications for its impact on lotie systems. Water Research, 32, 2122–2134. https://doi.org/10.1016/S0043-1354(97)00449-1

    Article  CAS  Google Scholar 

  • Gunsinger, M. R., Ptacek, C. J., Blowes, D. W., & Jambor, J. L. (2006). Evaluation of long-term sulfide oxidation processes within pyrrhotite-rich tailings Lynn Lake Manitoba. Journal of Contaminant Hydrology, 83(3–4), 149–170. https://doi.org/10.1016/j.jconhyd.2005.10.013

    Article  CAS  Google Scholar 

  • Hageman, P. L., Seal, R. R., Diehl, S. F., Piatak, N. M., & Lowers, H. A. (2015). Evaluation of selected static methods used to estimate element mobility, acid-generating and acid-neutralizing potentials associated with geologically diverse mining wastes. Applied Geochemistry, 57, 125–139. https://doi.org/10.1016/j.apgeochem.2014.12.007

    Article  CAS  Google Scholar 

  • Hakkou, R., Benzaazoua, M., & Busslere, B. (2008a). Acid mine drainage at the abandoned Ketara mine (Morocco): 2—Mine waste geochemical behavior. Mine Water and the Environment, 27, 160–170.

    Article  CAS  Google Scholar 

  • Hakkou, R., Benzaazoua, M., & Busslere, B. (2008b). Acid mine drainage at the abandoned Ketara mine (Morocco): 1—Environmental characterization. Mine Water and the Environment, 27, 145–159.

    Article  CAS  Google Scholar 

  • Hakkou, R., Benzaazoua, M., & Busslere, B. (2009). Laboratory evaluation of the use of alkaline phosphate wastes for the control of acidic mine drainage. Mine Water and the Environment, 28, 206–218.

    Article  CAS  Google Scholar 

  • Jianbo, L., Zewei, W., Xuan, R., Jundong, C., Haizhen, W., & Chaohai, W. (2016). Distribution and migration of heavy metals in soil and crops affected by acid mine drainage: Public health implications in Guangdong Province, China. Ecotoxicology and Environmental Safety, 124, 460–469. https://doi.org/10.1016/j.ecoenv.2015.11.023

    Article  CAS  Google Scholar 

  • Jouini, M., Neculita, C. M., Genty, T., & Benzaazoua, M. (2020). Environmental behavior of metal-rich residues from the passive treatment of acid mine drainage. Science of the Total Environment, 712, 136541. https://doi.org/10.1016/j.scitotenv.2020.136541

    Article  CAS  Google Scholar 

  • Juraj, M., Stefan, K., Julia, H., Martin, S., Jiri, S., Martin, C., Tomas, L., Marina, L., Axel, G., Falko, L., Anezka, B. R., Heather, J., & Rastislav, M. (2018). Synergies in elemental mobility during weathering of tetrahedrite [(Cu, Fe, Zn)12(Sb, As)4S13]: Field observations, electron microscopy, isotopes of Cu C, o, radiometric dating, and water geochemistry. Chemical Geology, 488, 1–20. https://doi.org/10.1016/j.chemgeo.2018.04.021

    Article  CAS  Google Scholar 

  • Kandji, E. H. B., Plante, B., Bussière, B., Beaudoin, G., & Dupont, P. P. (2017). Kinetic testing to evaluate the mineral carbonation and metal leaching potential of ultramafic tailing: case study of the Dumont Nickel Project, Amos, Quebec. Applied Geochemistry, 84, 262–276. https://doi.org/10.1016/j.apgeochem.2017.07.005

    Article  CAS  Google Scholar 

  • Kargbo, D. M., & He, J. (2004). A simple accelerated rock weathering method to predict acid generation kinetics. Ecotoxicology and Environmental Safety, 46, 775–783. https://doi.org/10.1007/s00254-004-1114-0

    Article  CAS  Google Scholar 

  • Kefeni, K. K., Msagati, T. A. M., & Mamba, B. B. (2017). Acid mine drainage: Prevention, treatment options, and resource recovery: A review. Journal of Cleaner Production, 151, 475–493. https://doi.org/10.1016/j.jclepro.2017.03.082

    Article  CAS  Google Scholar 

  • Khoeurn, K., Sakaguchi, A., Tomiyama, S., & Igarashi, T. (2019). Long-term acid generation and heavy metal leaching from the tailings of Shimokawa mine, Hokkaido, Japan: Column study under natural condition. Journal of Geochemical Exploration, 201, 1–12. https://doi.org/10.1016/j.gexplo.2019.03.003

    Article  CAS  Google Scholar 

  • Khon Kaen University. (2013) Report on the results of implementation of environmental impact prevention and correction measures and environmental quality monitoring measures Gold Mining Project, Thung Kham Company Limited, Khao Luang Subdistrict, Wang Saphung District, Loei Province.

  • Klongsamran, C., Chotipong, A., & Sutthirat, C. (2014). The impact of pH on the leaching of heavy metal from waste rock at Phutabpha gold mine. In Proceedings the 52th Academic conference, Kasetsart University, Bangkok, Thailand, 4–7 Febuary, 2014.

  • Koretsky, C. M., Haveman, M., Beuving, L., Cuellar, A., Shattuck, T., & Wagner, M. (2007). Spatial variation of redox and trace metal geochemistry in a minerotrophic fen. Biogeochemistry, 86, 33–62. https://doi.org/10.1007/s10533-007-9143-x

    Article  CAS  Google Scholar 

  • Koski, R. A., Munk, L., Foster, A. L., Shanks Iii, W. C., & Stillings, L. L. (2008). Sulfide oxidation and distribution of metals near abandoned copper mines in coastal environments Prince William Sound, Alaska, USA. Applied Geochemistry, 23(2), 227–254. https://doi.org/10.1016/j.apgeochem.2007.10.007

    Article  CAS  Google Scholar 

  • Krishnankutty, N., Idris, M., Hamzah, F. M., & Manan, Y. (2019). The chemical form and spatial variation of metals from sediment of Jemberau mining region of Tasik Chini, Malaysia. Environmental Science and Pollution Research, 26, 25046–25056. https://doi.org/10.1007/s11356-019-05680-3

    Article  CAS  Google Scholar 

  • Link, D. (1998). Development and validation of the new EPA microwave-assisted leach method 3051A. Environmental Science and Technology, 32, 3628–3632.

    Article  CAS  Google Scholar 

  • Lottermoser, B. G. (2010). Mine wastes: Characterization treatment and environmental impacts. Springer.

    Book  Google Scholar 

  • Lyubimtseva, N. G., Bortnikov, N. S., Borisovsky, S. E., Prokofiev, V. Y., & Vikent’eva, O. V. (2018). Fahlore and sphalerite from the Darasun Gold Deposit in the Eastern Transbaikal Region, Russia: I. mineral assemblages and intergrowths, chemical composition, and its evolution. Geology of Ore Deposits, 60, 93–120. https://doi.org/10.1134/S1075701518020034

    Article  Google Scholar 

  • Masipan, T., Chotpantarat, S., & Boonkaewwan, S. (2016). Experimental and modelling investigations of tracer transport in variably saturated agricultural soil of Thailand: Column study. Sustainable Environmental Research, 26, 97–101.

    Article  CAS  Google Scholar 

  • Meiqin, C., Guining, L., Chuling, G., Chengfang, Y., Jingxiong, W., Weilin, H., Nathan, Y., & Zhi, D. (2015). Sulfate migration in a river affected by acid mine drainage from the Dabaoshan mining area, South China. Chemosphere, 119, 734–743. https://doi.org/10.1016/j.chemosphere.2014.07.094

    Article  CAS  Google Scholar 

  • Miller, R. O., & Kissel, D. E. (2010). Comparison of soil pH methods on soils of North America. Soil Science Society of America Journal, 7, 310–316.

    Article  Google Scholar 

  • Naidu, G., Ryu, S., Thiruvenkatachari, R., Choi, Y., Jeong, S., & Vigneswaran, S. (2019). A critical review on remediation, reuse, and resource recovery from acid mine drainage. Environmental Pollution, 247, 1110–1124. https://doi.org/10.1016/j.envpol.2019.01.085

    Article  CAS  Google Scholar 

  • Nordstrom, D. K., Blowes, D. W., & Ptacek, C. J. (2015). Hydrogeochemistry and microbiology of mine drainage: an update. Applied Geochemistry, 57, 3–16. https://doi.org/10.1016/j.apgeochem.2015.02.008

    Article  CAS  Google Scholar 

  • Pakostova, E., Johnson, D. B., Bao, Z., MacKenzie, P. M., Ptacek, C. J., & Blowes, D. W. (2020). Bacterial and archaeal diversity in sulfide-bearing waste rock at faro mine complex, Yukon Territory, Canada. Geomicrobiology Journal, 37(6), 511–519. https://doi.org/10.1080/01490451.2020.1731020

    Article  CAS  Google Scholar 

  • Papunen, H. (1970). Sulfide mineralogy of the Kotalahti and Hitura nickel-copper ores, Finland, Ann Acad Sci Fenn AIII. Geologica-Geographica, 109, 74.

    Google Scholar 

  • Parbhakar-Fox, A., Lottermoser, B., & Bradshaw, D. (2013). Evaluating waste rock mineralogy and microtexture during kinetic testing for improved acid rock drainage prediction. Minerals Engineering, 52, 111–124. https://doi.org/10.1016/j.mineng.2013.04.022

    Article  CAS  Google Scholar 

  • Park, I., Tabelin, C. B., Jeon, S., Li, X., Seno, K., Ito, M., & Hiroyoshi, N. (2019a). A review of recent strategies for acid mine drainage prevention and mine tailings recycling. Chemosphere, 219, 588–606. https://doi.org/10.1016/j.chemosphere.2018.11.053

    Article  CAS  Google Scholar 

  • Plante, B., Benzaazoua, M., & Bussiere, B. (2011a). Kinetic testing and sorption studies by modified weathering cells to characterize the potential to generate contaminated natural drainage. Mine Water and the Environment, 30, 22–37. https://doi.org/10.1007/s10230-010-0131-3

    Article  CAS  Google Scholar 

  • Plante, B., Benzaazoua, M., & Bussiere, B. (2011b). Predicting geochemical behaviour of waste rock with low acid generating potential using laboratory kinetic tests. Mine Water and the Environment, 30, 2–37. https://doi.org/10.1007/s10230-010-0127-z

    Article  CAS  Google Scholar 

  • Plante, B., Bussiere, B., & Benzaazoua, M. (2012). Static tests response on 5 Canadian hard rock mine tailings with low net acid-generating potentials. Journal of Geochemical Exploration, 114, 57–69. https://doi.org/10.1016/j.gexplo.2011.12.003

    Article  CAS  Google Scholar 

  • Price, W. A., & Kwong, Y. T. J. (1997). Waste rock weathering, sampling and analysis: observations from the British Columbia Ministry of Employment and Investment database. In Proceedings of the 4th international conference on acid mine drainage, pp. 31–45. Vancouver, BC.

  • Rancourt, D. G., Fortin, D., Pichler, T., Thibault, P.-J., Lamarche, G., Morris, R. V., & Mercier, P. H. J. (2001). Mineralogy of a natural As-rich hydrous ferric oxide coprecipitate formed by mixing of hydrothermal fluid and seawater: Implications regarding surface complexation and color banding in ferrihydrite deposits. American Mineralogist, 86, 834–851.

    Article  CAS  Google Scholar 

  • Rezaie, B., & Anderson, A. (2020). Sustainable resolutions for environmental threat of the acid mine drainage. Science of the Total Environment, 717, 2020. https://doi.org/10.1016/j.scitotenv.2020.137211

    Article  CAS  Google Scholar 

  • Rodmanee, T. (2000). Genetic model of Phu Thap Fha gold deposit, Ban Huai Phuk Amphoe Wang Saphung, Changwat Loei. Master thesis, Chiang Mai University, Chiang Mai.

  • Roy, V., Demers, I., Plante, B., & Theriault, M. (2020). Kinetic testing for oxidation acceleration and passivation of sulfides in waste rock piles to reduce contaminated neutral drainage generation potential. Mine Water and the Environment, 39, 42–255. https://doi.org/10.1007/s10230-020-00680-z

    Article  CAS  Google Scholar 

  • Sae-Ju, J., Chotpantarat, S., & Thitimakorn, T. (2020). Hydrochemical, geophysical and multivariate statistical investigation of the seawater intrusion in the coastal aquifer at Phetchaburi Province, Thailand. Journal of Asian Earth Sciences, 191, 140165

    Article  Google Scholar 

  • Salomons, W. (1995). Environmental impact of metals derived from mining activities: Processes, predictions, prevention. Geochemistry. Exploration Environment, Analysis, 52, 5–23. https://doi.org/10.1016/0375-6742(94)00039-E

    Article  CAS  Google Scholar 

  • Schofield, R. K., & Taylor, A. W. (1995). The measurement of soil pH. Soil Science Society of America Journal, 19, 164–167.

    Article  Google Scholar 

  • Sepsford, D.J., & Willium, K. P. (2005). Predominant chemical kinetics in laboratory prediction of ARD. 9th International mine water congress. In Proceeding of Mine water 2005 - mining closure. 5–7 September 2005, Oviedo University, Spain, 57–65.

  • Sharma, B. B., & Sarma, H. P. (2018). Assessment of heavy metal pollution in a Himalayan river using multivariate statistical tools: a case study of the Kameng River in Arunachal Pradesh, India. Arabian Journal of Geosciences. https://doi.org/10.1007/s12517-018-3556-9

    Article  Google Scholar 

  • Shaw, M., Yazbek, L., Singer, D., & Herndon, E. (2020). Seasonal mixing from intermittent flow drives concentration-discharge behavior in a stream affected by coal mine drainage. Hydrological Processes, 34, 3669–3682. https://doi.org/10.1002/hyp.13822

    Article  Google Scholar 

  • Singer, P. C., & Strumm, W. (1970). Acidic mine drainage: the rate-determining step. Science, 167, 1121–1123.

    Article  CAS  Google Scholar 

  • Smuda, J., Dold, B., Spangenberg, J. E., & Pfeifer, H. R. (2008). Geochemistry and stable isotope composition of fresh alkaline porphyry copper tailings: Implications on sources and mobility of elements during transport and early stages of deposition. Chemical Geology, 256(1–2), 62–76. https://doi.org/10.1016/j.chemgeo.2008.08.001

    Article  CAS  Google Scholar 

  • Soltani, A., Rajabi, M. H., Zeinali, E., & Soltani, E. (2013). Energy inputs and greenhouse gases emissions in wheat production in Gorgan, Iran. Energy, 50, 54–61. https://doi.org/10.1016/j.energy.2012.12.022

    Article  CAS  Google Scholar 

  • Sonthiphand, P., Ruangroengkulrith, S., Mhuantong, W., Charoensawan, V., Chotpantarat, S., & Boonkaewwan, S. (2019). Metagenomic insights into microbial diversity in a groundwater basin impacted by a variety of anthropogenic activities. Environmental Science and Pollution Research, 26, 26765–26781.

    Article  CAS  Google Scholar 

  • Sutthirat, C. (2011). Geochemical application for environmental monitoring and metal mining management (2012). Retrieved 9 Aug 2020 from https://www.intechopen.com/books/environmental-monitoring/geochemical-application-for-environmental-monitoring-and-metal-mining-management.

  • Tabelin, C. B., Corpuz, R. D., Igarashi, T., Villacorte-Tabelin, M., Alorro, R. D., Yoo, K., Raval, S., Ito, M., & Hiroyoshi, N. (2020). Acid mine drainage formation and arsenic mobility under strongly acidic conditions: Importance of soluble phases, iron oxyhydroxides/oxides and nature of oxidation layer on pyrite. Journal of Hazardous Materials, 399, 122844. https://doi.org/10.1016/j.jhazmat.2020.122844

    Article  CAS  Google Scholar 

  • Tiankao, W., & Chotpantarat, S. (2018). Risk assessment of arsenic from contaminated soils to shallow groundwater in Ong Phra sub-district, Suphan Buri Province, Thailand. Journal of Hydrology: Regional Studies, 19, 80–96.

    Google Scholar 

  • Torrance, K. W., Redwood, S. D., & Cecchi, A. (2021). The impact of artisanal gold mining, ore processing and mineralization on water quality in Marmato, Colombia. Environmental Geochemistry and Health. https://doi.org/10.1007/s10653-021-00898-y

    Article  Google Scholar 

  • U.S. Environmental Protection Agency. (1986). Method 9038 SULFATE (TURBIDIMETRIC). Retrieved 9 Aug 2020 from http://www.caslab.com/EPAMethods/PDF/EPA-Method-9038.pdf.

  • U.S. Environmental Protection Agency. (1994). Acid mine drainage prediction. Retrieved 9 Aug 2020 from http://water.epa.gov/polwaste/nps/upload/amd.pdf.

  • U.S. Environmental Protection Agency. (2007). Method 3051A Microwave assisted acid digestion of sediments, sludges, soils, and oils. Retrieved 9 Aug 2020 from http://www.caslab.com/EPA-Methods/PDF/EPA-Method-3051A.pdf.

  • Vaughan, D. J., & Craig, J. R. (1978). Mineral chemistryof metal sulfides. Cambridge University Press.

    Google Scholar 

  • Velasco, F., Herrero, J. M., Suárez, S., Yusta, I., Alvaro, A., & Tornos, F. (2013). Supergene features and evolution of gossans capping massive sulphide deposits in the Iberian Pyrite Belt. Ore Geology Reviews, 53, 181–203.

    Article  Google Scholar 

  • Waleeittikul, A., Chotpantarat, S., & Ong, S. K. (2019). Impacts of salinity level and flood irrigation on Cd mobility through a Cd-contaminated soil, Thailand: Experimental and modeling techniques. Journal of Soils and Sediments, 19(5), 2357–2373.

    Article  CAS  Google Scholar 

  • Weiner, E. R. (2012). Applications of environmental aquatic chemistry: A practical guide. CRC Press.

    Book  Google Scholar 

  • Wikiniyadhanee, R., Chotpantarat, S., & Ong, S. K. (2015). Effects of kaolinite colloids on Cd2+ transport through saturated sand under varying ionic strength conditions: Column experiments and modeling approaches. Journal of Contaminant Hydrology, 182, 146–156.

    Article  CAS  Google Scholar 

  • Wisitthammasri, W., Chotpantarat, S., & Thitimakorn, T. (2020). Multivariate statistical analysis of the hydrochemical characteristics of a volcano sedimentary aquifer in Saraburi Province, Thailand. Journal of Hydrology: Regional Studies, 32, 100745

    Google Scholar 

  • Xie, L., & Zyl, D. V. (2020). Distinguishing reclamation, revegetation and phytoremediation, and the importance of geochemical processes in the reclamation of sulfidic mine tailings: A review. Chemosphere. https://doi.org/10.1016/j.chemosphere.2020.126446

    Article  Google Scholar 

  • Zady, M. F. (2000). Z-stats basic statistics, Z-12: Correlation and simple least squares regression. Westgard QC website. Retrieved 9 Aug 2020 from www.westgard.com/lesson42.htm.

  • Zdravković, A., Cvetković, V., Pačevski, A., Rosić, A., Šarić, K., Matović, V., & Erić, S. (2017). Products of oxidative dissolution on waste rock dumps at the Pb-Zn Rudnik mine in Serbia and their possible effects on the environment. Journal of Geochemical Exploration, 181, 160–171. https://doi.org/10.1016/j.gexplo.2017.07.012

    Article  CAS  Google Scholar 

  • Zhaokun, L., Hongxiao, T., & Fucang, C. (1992). Chemical processes of acid mine drainage in the aquatic system of copper mine area. Journal of Environmental Science (China), 4, 42–48.

    Google Scholar 

Download references

Acknowledgements

The authors thankfully acknowledge the support of the Center of Excellence on Hazardous Substance Management (HSM) and the International Postgraduate Programs in Environmental Management, Graduate School, Chulalongkorn University for their invaluable support in terms of facilities and scientific equipment. We would like to express our sincere thanks to the 90th Anniversary of the Chulalongkorn University, National Research Council of Thailand (NRCT): NRCT5-RSA63001-06, for financial support and to thank the Ratchadaphiseksomphot Endowment Fund, Chulalongkorn University for the Research Unit.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Srilert Chotpantarat.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 880 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Charuseiam, Y., Chotpantarat, S. & Sutthirat, C. Acid mine drainage potential of waste rocks in a gold mine (Thailand): application of a weathering cell test and multivariate statistical analysis. Environ Geochem Health 44, 1049–1079 (2022). https://doi.org/10.1007/s10653-021-00976-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10653-021-00976-1

Keywords

Navigation