Skip to main content
Log in

Mechanical and thermo-physical characterization of mortars made with uncontaminated marine sediments

  • ORIGINAL ARTICLE
  • Published:
Journal of Material Cycles and Waste Management Aims and scope Submit manuscript

Abstract

In a context of sustainable development, civil engineering must increasingly use recyclable materials to preserve natural resources. Sediments could be a solution in the context of their recovery in several areas. Uncontaminated marine sediments were used to partially substitute sand aggregate in the formulation of mortars. Five mortars were manufactured with different percentages of sand substitution. Physical, chemical, mineralogy, and mechanical characterization were carried out in order to investigate their possible use and impact in cemented-based materials. The mechanical strengths and the elastic modulus of mortars were analyzed. The hydration kinetics of the mortars were studied at different temperatures. The acceleration of the chemical reactions was also assessed through the determination of the apparent activation energy of mortars. Finally, the microstructure of two formulations of mortars was observed by Scanning Electron Microscope (SEM). Results show a drop of the mechanical properties with the increase of the percentage of substitution. This can be attributed to the natural composition of sediments and to the increase of the total porosity of the mixtures. The measured heat released of mortars increase with the increase of sediment content. This result suggests an additional chemical activity linked to the presence of sediments within the matrix.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. R. Boutin (1999), “Amélioration des connaissances sur le comportement des rejets en mer de produits de dragage de type vase : phénomènes à court terme et dans le champ proche,” thesis, Lyon, INSA.

  2. Junakova N, Junak J, Balintova M (2015) Reservoir sediment as a secondary raw material in concrete production. Clean Techn Environ Policy 17(5):1161–1169. https://doi.org/10.1007/s10098-015-0943-8

    Article  Google Scholar 

  3. Rozière E, Samara M, Loukili A, Damidot D (2015) Valorisation of sediments in self-consolidating concrete: mix-design and microstructure. Constr Build Mater 81:1–10. https://doi.org/10.1016/j.conbuildmat.2015.01.080

    Article  Google Scholar 

  4. He J, Shi X, Li Z, Zhang L, Feng X, Zhou L (2020) Strength properties of dredged soil at high water content treated with soda residue, carbide slag, and ground granulated blast furnace slag. Constr Build Mater 242:118126. https://doi.org/10.1016/j.conbuildmat.2020.118126

    Article  Google Scholar 

  5. Hamer K, Karius V (2002) Brick production with dredged harbour sediments. an industrial-scale experiment. Waste Manage 22(5):521–530. https://doi.org/10.1016/S0956-053X(01)00048-4

    Article  Google Scholar 

  6. Cappuyns V, Deweirt V, Rousseau S (2015) Dredged sediments as a resource for brick production: possibilities and barriers from a consumers’ perspective. Waste Manage 38:372–380. https://doi.org/10.1016/j.wasman.2014.12.025

    Article  Google Scholar 

  7. Xu Y, Yan C, Xu B, Ruan X, Wei Z (2014) The use of urban river sediments as a primary raw material in the production of highly insulating brick. Ceram Int 40(6):8833–8840. https://doi.org/10.1016/j.ceramint.2014.01.105

    Article  Google Scholar 

  8. Samara M, Lafhaj Z, Chapiseau C (2009) Valorization of stabilized river sediments in fired clay bricks: factory scale experiment. J Hazard Mater 163(2):701–710. https://doi.org/10.1016/j.jhazmat.2008.07.153

    Article  Google Scholar 

  9. Aouad G, Laboudigue A, Gineys N, Abriak NE (2012) Dredged sediments used as novel supply of raw material to produce Portland cement clinker. Cem Concr Compos 34(6):788–793. https://doi.org/10.1016/j.cemconcomp.2012.02.008

    Article  Google Scholar 

  10. Dalton JL, Gardner KH, Seager TP, Weimer ML, Spear JCM, Magee BJ (2004) Properties of Portland cement made from contaminated sediments. Resour Conserv Recycl 41(3):227–241. https://doi.org/10.1016/j.resconrec.2003.10.003

    Article  Google Scholar 

  11. Wang D, Abriak NE, Zentar R (2017) Dredged marine sediments used as novel supply of filling materials for road construction. Marine Georesources Geotechnol 35(4):472–480. https://doi.org/10.1080/1064119X.2016.1198945

    Article  Google Scholar 

  12. Rekik B, Boutouil M (2009) Geotechnical properties of dredged marine sediments treated at high water/cement ratio. Geo-Mar Lett 29(3):171–179. https://doi.org/10.1007/s00367-009-0134-x

    Article  Google Scholar 

  13. Siham K, Fabrice B, Edine AN, Patrick D (2008) Marine dredged sediments as new materials resource for road construction. Waste Manage 28(5):919–928. https://doi.org/10.1016/j.wasman.2007.03.027

    Article  Google Scholar 

  14. Wang D, Abriak N-E, Zentar R, Xu W (2012) Solidification/stabilization of dredged marine sediments for road construction. Environ Technol. 33:95–101. https://doi.org/10.1080/09593330.2011.551840

    Article  Google Scholar 

  15. Dubois V, Abriak NE, Zentar R, Ballivy G (2009) The use of marine sediments as a pavement base material. Waste Manage 29(2):774–782. https://doi.org/10.1016/j.wasman.2008.05.004

    Article  Google Scholar 

  16. Zentar R, Dubois V, Abriak NE (2008) Mechanical behaviour and environmental impacts of a test road built with marine dredged sediments. Resour Conserv Recycl 52(6):947–954. https://doi.org/10.1016/j.resconrec.2008.02.002

    Article  Google Scholar 

  17. Ennahal I, Maherzi W, Mamindy-Pajany Y, Benzerzour M, Abriak N-E (2019) Eco-friendly polymers mortar for floor covering based on dredged sediments of the north of France. J Mater Cycles Waste Manag 21(4):861–871. https://doi.org/10.1007/s10163-019-00843-3

    Article  Google Scholar 

  18. Couvidat J, Benzaazoua M, Chatain V, Bouamrane A, Bouzahzah H (2016) Feasibility of the reuse of total and processed contaminated marine sediments as fine aggregates in cemented mortars. Constr Build Mater 112:892–902. https://doi.org/10.1016/j.conbuildmat.2016.02.186

    Article  Google Scholar 

  19. Meyer C (2009) The greening of the concrete industry. Cem Concr Compos 31(8):601–605. https://doi.org/10.1016/j.cemconcomp.2008.12.010

    Article  Google Scholar 

  20. Kasmi A, Abriak N-E, Benzerzour M, Azrar H (2017) Environmental impact and mechanical behavior study of experimental road made with river sediments: recycling of river sediments in road construction. J Mater Cycles Waste Manag 19(4):1405–1414. https://doi.org/10.1007/s10163-016-0529-5

    Article  Google Scholar 

  21. Benslafa FKA, Kerdal D, Ameur M, Mekerta B, Semcha A (2015) Durability of mortars made with dredged sediments. Procedia Eng 118:240–250. https://doi.org/10.1016/j.proeng.2015.08.423

    Article  Google Scholar 

  22. Zhao Z, Benzerzour M, Abriak N-E, Damidot D, Courard L, Wang D (2018) Use of uncontaminated marine sediments in mortar and concrete by partial substitution of cement. Cement Concr Compos 93:155–162. https://doi.org/10.1016/j.cemconcomp.2018.07.010

    Article  Google Scholar 

  23. Benzerzour M, Maherzi W, Mouhamadou AA, Amar N-E, Damidot D (2018) Formulation of mortars based on thermally treated sediments. J Mater Cycles Waste Manag 20(1):592–603. https://doi.org/10.1007/s10163-017-0626-0

    Article  Google Scholar 

  24. Benzerzour M, Amar M, Abriak N-E (2017) New experimental approach of the reuse of dredged sediments in a cement matrix by physical and heat treatment. Constr Build Mater 140:432–444. https://doi.org/10.1016/j.conbuildmat.2017.02.142

    Article  Google Scholar 

  25. Amar M, Benzerzour M, Safhi AEM, Abriak N-E (2018) Durability of a cementitious matrix based on treated sediments. Case Stud Constr Mater 8:258–276. https://doi.org/10.1016/j.cscm.2018.01.007

    Article  Google Scholar 

  26. Benkaddour M, Kazi Aoual F, Semcha A (2009) Durabilité des mortiers à base de pouzzolane naturelle et de pouzzolane artificielle. Rev Nat Tecnol 1(1):63–73

    Google Scholar 

  27. Dang TA, Kamali-Bernard S, Prince WA (2013) Design of new blended cement based on marine dredged sediment. Constr Build Mater 41:602–611. https://doi.org/10.1016/j.conbuildmat.2012.11.088

    Article  Google Scholar 

  28. Agostini F, Davy CA, Skoczylas F, Dubois Th (2010) Effect of microstructure and curing conditions upon the performance of a mortar added with treated sediment aggregates (TSA). Cem Concr Res 40(11):1609–1619. https://doi.org/10.1016/j.cemconres.2010.07.003

    Article  Google Scholar 

  29. Agostini F, Skoczylas F, Lafhaj Z (2007) About a possible valorisation in cementitious materials of polluted sediments after treatment. Cement Concr Compos 29(4):270–278. https://doi.org/10.1016/j.cemconcomp.2006.11.012

    Article  Google Scholar 

  30. Chen QY, Tyrer M, Hills CD, Yang XM, Carey P (2009) Immobilisation of heavy metal in cement-based solidification/stabilisation: a review. Waste Manag 29(1):390–403. https://doi.org/10.1016/j.wasman.2008.01.019

    Article  Google Scholar 

  31. Gardner KH, Tsiatsios CJ, Melton J, Seager TP (2007) Leaching behavior of estuarine sediments and cement-stabilized sediments in upland management environments. Waste Manag 27(11):1648–1654. https://doi.org/10.1016/j.wasman.2006.09.002

    Article  Google Scholar 

  32. Paria S, Yuet PK (2011) Solidification–stabilization of organic and inorganic contaminants using portland cement: a literature review. Environ Rev. https://doi.org/10.1139/a06-004

    Article  Google Scholar 

  33. Zentar R, Wang D, Abriak NE, Benzerzour M, Chen W (2012) Utilization of siliceous–aluminous fly ash and cement for solidification of marine sediments. Constr Build Mater 35:856–863. https://doi.org/10.1016/j.conbuildmat.2012.04.024

    Article  Google Scholar 

  34. Benzaazoua M, Fall M, Belem T (2004) A contribution to understanding the hardening process of cemented pastefill. Miner Eng 17(2):141–152. https://doi.org/10.1016/j.mineng.2003.10.022

    Article  Google Scholar 

  35. Yan DYS, Tang IY, Lo IMC (2014) Development of controlled low-strength material derived from beneficial reuse of bottom ash and sediment for green construction. Constr Build Mater 64:201–207. https://doi.org/10.1016/j.conbuildmat.2014.04.087

    Article  Google Scholar 

  36. Sétra Amatr (2012), Guide méthodologique : Acceptabilité de Matériaux Alternatifs en Techniques Routière, Evaluation environnementale.

  37. EN 196–1:(2005), Standard Methods of Testing Cement - Part 1: Determination of Strength, CEN.

  38. H. Kada-Benameur (1998), “Techniques de mesures fluxmétriques appliquées à l’étude de la cinétique d’hydratation des bétons : calorimétrie isotherme et mesures directes sur ouvrages,” These de doctorat, Artois.

  39. Kada-Benameur H, Wirquin E, Duthoit B (2000) Determination of apparent activation energy of concrete by isothermal calorimetry. Cem Concr Res 30(2):301–305. https://doi.org/10.1016/S0008-8846(99)00250-1

    Article  Google Scholar 

  40. Wirquin E, Broda M, Duthoit B (2002) Determination of the apparent activation energy of one concrete by calorimetric and mechanical means: influence of a superplasticizer. Cem Concr Res 32(8):1207–1213. https://doi.org/10.1016/S0008-8846(02)00770-6

    Article  Google Scholar 

  41. AFNOR, NF EN 12664 (2001), Performance thermique des matériaux et produits pour le batiment, Determination de la résistance thermique par la méthode de la plaque chaude gardée et la méthode fluxmétrique.

  42. Nielsen LF (1993) Strength development in hardened cement paste: examination of some empirical equations. Mater Struct 26(5):255–260. https://doi.org/10.1007/BF02472946

    Article  Google Scholar 

  43. M. Amar (2017), “Traitement des sédiments de dragage pour une valorisation dans les matrices cimentaires,” These de doctorat, Lille 1.

  44. J. G. Ndong Engone (2015), “Développement de matériaux cimentaires à base de sous-produits bois : mise en forme par extrusion et vibrocompactage,” These de doctorat, Artois.

  45. Demirboǧa R (2003) Influence of mineral admixtures on thermal conductivity and compressive strength of mortar. Energy Build 35(2):189–192. https://doi.org/10.1016/S0378-7788(02)00052-X

    Article  Google Scholar 

  46. Shafigh P, Asadi I, Akhiani AR, Mahyuddin NB, Hashemi M (2020) Thermal properties of cement mortar with different mix proportions. Mater Construcc 70:339–224. https://doi.org/10.3989/mc.2020.09219

    Article  Google Scholar 

  47. Tremblay H, Duchesne J, Locat J, Leroueil S (2002) Influence of the nature of organic compounds on fine soil stabilization with cement. Can Geotech J 39:535–546. https://doi.org/10.1139/t02-002

    Article  Google Scholar 

  48. Beddaa H, BenFraj A, Lavergne F, Torrenti JM (2019) Effect of potassium humate as humic substances from river sediments on the rheology, the hydration and the strength development of a cement paste. Cem Concr Compos 104:12. https://doi.org/10.1016/j.cemconcomp.2019.103400

    Article  Google Scholar 

  49. Arliguie G, Grandet J (1990) Influence de la composition d’un ciment portland sur son hydration en presence de zinc. Cem Concr Res 20(4):517–524. https://doi.org/10.1016/0008-8846(90)90096-G

    Article  Google Scholar 

  50. Minocha AK, Jain N, Verma CL (2003) Effect of organic materials on the solidification of heavy metal sludge. Constr Build Mater 17(2):77–81. https://doi.org/10.1016/S0950-0618(02)00098-3

    Article  Google Scholar 

  51. Park C-K (2000) Hydration and solidification of hazardous wastes containing heavy metals using modified cementitious materials. Cem Concr Res 30(3):429–435. https://doi.org/10.1016/S0008-8846(99)00272-0

    Article  Google Scholar 

  52. Bhatty JI and Portland Cement Association (1995), Role of minor elements in cement manufacture and use. Skokie, Ill.: Portland Cement Association.

  53. Malviya R, Chaudhary R (2006) Factors affecting hazardous waste solidification/stabilization: a review. J Hazard Mater 137(1):267–276. https://doi.org/10.1016/j.jhazmat.2006.01.065

    Article  Google Scholar 

  54. Minocha A, Jain N, Verma CL (2003) Effect of inorganic materials on the solidification of heavy metal sludge. Cem Concr Res 33:1695–1701. https://doi.org/10.1016/S0008-8846(03)00146-7

    Article  Google Scholar 

  55. Carlos A, Arruda A, Silva T, Carvalho P, Trautwein L (2017) Influence of coarse aggregate on concrete’s elasticity modulus. Acta Sci Technol 39:17–25. https://doi.org/10.4025/actascitechnol.v39i1.29873

    Article  Google Scholar 

  56. J. Perreault-Chabot (2010), “Modélisation de la pénétration des chlorures dans les stationnements multiétagés,”, https://corpus.ulaval.ca/jspui/handle/20.500.11794/21347.

  57. Neville A (2004) The confused world of sulfate attack on concrete. Cem Concr Res 34(8):1275–1296. https://doi.org/10.1016/j.cemconres.2004.04.004

    Article  Google Scholar 

  58. Regourd M. (1975) L’action de l’eau de mer sur les ciments ». Annales de l’ITBTP, supplément au n° 329, Série « Liants hydrauliques » n° 329, p 86–102

  59. Bonnell DGR, Nottage ME (1939) Studies in porous materials with special reference to building materials: I. The crystallisation of salts in porous materials. J Soc Chem Ind 58:16–21

    Google Scholar 

  60. La durabilité des bétons. Bases scientifiques pour la formulation de bétons durables dans leur environnement, Chapitres 2–3–12, Jean-Pierre Ollivier, Angélique Vichot.

  61. Cheng S, Shui Z, Sun T, Yu R, Zhang G (2018) Durability and microstructure of coral sand concrete incorporating supplementary cementitious materials. Constr Build Mater 171:44–53. https://doi.org/10.1016/j.conbuildmat.2018.03.082

    Article  Google Scholar 

  62. N. T. Tran (2009), “Valorisation de sédiments marins et fluviaux en technique routière,” These de doctorat, Artois.

  63. F. Marot (1997), “Caractérisation et traitement de sédiments de dragage contenant des polluants métalliques,” These de doctorat, Le Havre.

  64. J. Bresson (1980), “La prévision des résistances des produits en béton : Facteur de maturité - Temps équivalent”. Publication Technique N° 56.

  65. V. Waller (1999), “Relations entre composition des betons, exothermie en cours de prise et resistance en compression,” phdthesis, Ecole des Ponts.

  66. Asadi I, Shafigh P, Abu Hassan ZFB, Mahyuddin NB (2018) Thermal conductivity of concrete – a review. J Build Eng 20:81–93. https://doi.org/10.1016/j.jobe.2018.07.002

    Article  Google Scholar 

  67. Uysal H, Demirboğa R, Şahin R, Gül R (2004) The effects of different cement dosages, slumps, and pumice aggregate ratios on the thermal conductivity and density of concrete. Cem Concr Res 34(5):845–848. https://doi.org/10.1016/j.cemconres.2003.09.018

    Article  Google Scholar 

  68. Demirboğa R, Türkmen İ, Burhan Karakoç M (2007) Thermo-mechanical properties of concrete containing high-volume mineral admixtures. Build Environ 42(1):349–354. https://doi.org/10.1016/j.buildenv.2005.08.027

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Abdelwaheb Amrouche.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Abdallah, A., Kada, H. & Amrouche, A. Mechanical and thermo-physical characterization of mortars made with uncontaminated marine sediments. J Mater Cycles Waste Manag 24, 2483–2498 (2022). https://doi.org/10.1007/s10163-022-01497-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10163-022-01497-4

Keywords

Navigation