Skip to main content
Log in

Environmental impact and mechanical behavior study of experimental road made with river sediments: recycling of river sediments in road construction

  • ORIGINAL ARTICLE
  • Published:
Journal of Material Cycles and Waste Management Aims and scope Submit manuscript

Abstract

Dredging operations are necessary to maintain harbour activities, to prevent floods, and to restore ecosystem. These sediments after dredging are considered as waste, and their management is a complex problem. In the context of sustainable development, traditional solutions, such as dumping, will be more and more regulated. More than ever with the shortage of aggregates from quarries, dredged sediment could constitute a new granular material source for Civil Engineering domain. The principal objective of this works is to use dredged river sediments in the road construction. This study consists to determine the physical–chemical, geotechnical, and environmental impact characteristics of raw river sediments. To improve the mechanical performance of this river material be used in road construction, a treatment by the hydraulic binder in combination with granular corrector has been proposed. The impacts of the treated material on the environment have been evaluated. The last part of this study focuses on the realization of an experimental road with the designed mixes in the laboratory. The validation of mechanical characteristics and the study of the environmental impacts have been made on core samples from the experimental road. The monitoring of the quality of the percolating water and runoff water has been explored. The obtained results in laboratory and in situ are promising for potential use of river sediments in foundation layer of the road construction.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Life (2002) Methods of management and re-use of polluted sediments, european project realized by in vivo. Agence de l’eau Artois Picardie, Pôle de Compétence des sites et sols pollués. Artois Picardie

  2. Alzieu C (1999) Dragages et environnement marin: état des connaissances: Ministère de l’aménagement du territoire et de l’environnement, Paris

  3. Sednet (2011) European sediment network » site: http://www.sednet.org (Online)

  4. Décret des déchets (2002) Décret no. 2002-540 du 18 avril 2002 relatif à la classification des déchets

  5. Lehecho I (2001) État de l’art des tests de traitabilité d’une pollution, Les cahiers techniques,Pôle de compétence Sites et sédiments pollués en région Nord-Pas-de-Calais. Pôles de compétence Sites et sédiments pollués, Nord-Pas-de-Calais

  6. L’Union Nationale des Industries de Carrières et Matériaux UNICEM (2009) Carriére de Granulats et Developpement Durable 2010, Paris

  7. Kasmi A (2014) Prétraitement et traitement des sédiments fluviaux en vue d’une valorisation en technique routière. Douai: Laboratoire de génie civil et géo-environnement (LGCgE) Université LILLE1, École nationale supérieure des techniques industrielles et des mines (Douai, Nord). Département Génie civil et Environnemental

  8. Grubb DG, Davis A, Sands SC, Carnivale M, Wartman J, Gallagher PM (2006) Field evaluation of crushed glass-dredged material blends. J Geotech Geoenviron Eng (ASCS) 5(132):577–590

    Article  Google Scholar 

  9. Grubb DG, Wazne M, Jagupilla SC, Malasavage NE, Bradfield WB (2013) Ageing effects in field-compacted dredged material-steel slag fines blends. J Hazard Toxic Radioact Waste 17:107–119

    Article  Google Scholar 

  10. Grubb DG, Gallagher PM, Wartman J, Liu Y, Carnivale M (2006) Laboratory evaluation of crushed glass-dredged material blends. J Geotech Geoenviron Eng (ASCE) 132:562–576

    Article  Google Scholar 

  11. Brakni S (2008) Première approche vers une valorisation de granulats artificiels à base de sédiments de dragage. Thèse de Doctorat à l’Ecole des Mines de Douai

  12. Zri A (2010) Mise en place d’une nouvelle approche de formulation d’une matrice cimentaire à base de sable de dragage: application aux bétons de sables et granulats. Thèse de Doctorat à l’école des Mines de Douai, Douai

    Google Scholar 

  13. Azrar H (2014) Contribution à la valorisation des sédiments marins de dragage: Technique routière, béton et granulats artificiels. Douai: Laboratoire de génie civil et géo-environnement (LGCgE) Université LILLE1, École nationale supérieure des techniques industrielles et des mines Douai. Département Génie civil et Environnemental

  14. Achour R (2013) Valorisation et caractérisation de la durabilité d’un matériau routier et d’un béton à base de sédiment de dragage. Thèse de Doctorat à l’école des Mines de Douai et l’universite de Sherbrooke

  15. Samara M (2007) Valorisation des sédiments fluviaux pollués après inertage dans la brique cuite. Thèse de doctorat à L’école Centrale de Lille and Université des Sciences et Techniques de Lille

  16. Lafhaj Z, Samara M, Agostini F, Boucard L, Skoczylas F, Depelsenaire G (2007) Polluted river sediments from the North region of France: treatment with Novosol process and valorization in clay bricks. Constr Build Mater 148:606–612

    Google Scholar 

  17. Benallal L, Ammari M, Frar I, Azmani A, Belmokhtar N-E (2011) Caractérisation et valorisation des sédiments de dragage des ports de Tanger et Larache (Maroc). Paralia 4:5.1–5.13

    Article  Google Scholar 

  18. Dalton J-L, Gardner K-H, Seager T-P, Weimer M-I, Spear J-C-M, Magee B-J (2004) Properties of Portland cement made from contaminated sediments. Resour Conserv Recycl 41:227–241

    Article  Google Scholar 

  19. NF P 94–050 (1995) Soils: investigation and testing–determination of moisture content–oven drying method. Association Française de Normalisation

  20. NF EN 15169 (2007) Determination of loss on ignition in waste, sludge and sediments. Association Française de Normalisation, Paris

    Google Scholar 

  21. NF P 94–051 (1993) Soil: investigation and testing–determination of atterberg’s limits–liquid limit test using casagrande apparatus-plastic limit test on rolled thread. Association Française de Normalisation

  22. NF P 94–052-1 (1995) Soils: investigation and testing–atterberg limits determination–Part I: liquid limit–cone penetrometer method. Association Française de Normalisation

  23. ISO 13320 (2009) Particle size analysis–laser diffraction methods–general principles–Tirage 2. ISO, Switzerland

    Google Scholar 

  24. NF EN 13286–2 (2010) Unbound and hydraulically bound mixtures. Part 2: Test methods for laboratory reference density and water content–Proctor compaction. Association Française de Normalisation, Paris

  25. NF EN 13286–47 (2010) Unbound and hydraulically bound mixtures. Part 47: Test methods for the determination of the Californian Bearing Ration, immediate bearing index and linear swelling. Association Française de Normalisation, Paris

  26. NF EN12457-2 (2002) Characterization of waste-leaching compliance test for leaching of granular waste materials and sludges–Part 2: One stage batch test at a liquid to solid ratio of 10 l/kg for materials with particle size below 4 mm (without or with size reduction)

  27. SETRA (2012) Guide méthodologique: Acceptabilité de matériaux alternatifs en technique routière-Evaluation environnementale

  28. Achour R, Abriak N-E, Zentar R, Rivard P, Gregoire P (2014) Valorization of unauthorized sea disposal dredged sediments as a road foundation material. Environ Technol 35:1997–2007. doi:10.1080/09593330.2014.889758

    Article  Google Scholar 

  29. Dubois V, Zentar R, Abriak NE, Grégoire P (2011) Fine sediments as a granular source for civil engineering. Eur J Environ Civ Eng 15:137–166

    Article  Google Scholar 

  30. Wang D, Abriak NE, Zentar R (2013) Strength and deformation properties of Dunkirk marine sediments solidified with cement, lime and fly ash. Eng Geol 160:90–99

    Article  Google Scholar 

  31. Dubois V, Abriak NE, Zentar R, Ballivy G (2009) The use of marine sediments as a pavement base material. Waste Manag 29:774–782

    Article  Google Scholar 

  32. NF EN 13286–42 (2003) Unbound and hydraulically bound mixtures–Part 42: Test method for the determination of the indirect tensile strength of hydraulically bound mixtures

  33. NF EN 13286–43 (2003) Unbound and hydraulically bound mixtures–Part 43: Test method for the determination of the modulus of elasticity of hydraulically bound mixtures

  34. Zentar R, Dubois V, Abriak N-E (2008) Mechanical behavior and environmental impacts of a test road built with marine dredged sediments. Resour Conserv Recycl 52:947–954

    Article  Google Scholar 

  35. Loi sur l’eau (2012) Circulaire “relative à l’application de l’arrêté du 17 décembre 2008 établissant les critères d’évaluation et les modalités de détermination de l’état des eaux souterraines et des tendances significatives et durables de dégradation de l’état chimique”. RÉPUBLIQUE FRANÇAISE: La ministre de l’écologie, du développement durable et de l’énergie

  36. GTR (1992) Réalisation des remblais et des couches de forme. Guide technique.Fascicule I. Principes généraux

  37. SETRA (1998) Assises de Chaussées. Guide d’application des normes pour le réseau routier national. Paris: LCPC Edition

  38. Miraoui M (2010) Prétraitement et traitement des sédiments de dragage en vue d’une valorisation dans le génie civil. Thèse Doctorat à l’école des Mines de Douai, Douai

    Google Scholar 

  39. Tran NT (2009) Valorisation de sédiments marins et fluviaux en technique routière. Thèse de Doctorat, Ecole Mines de Douai

    Google Scholar 

  40. Miraoui M, Zentar R, Abriak NE (2012) Road material basis in dredged sediment and basic oxygen furnace steel slag. Constr Build Mater 30:309–319

    Article  Google Scholar 

  41. Zentar R, Wang D, Abriak NE, Benzerzour M, Chen W (2012) Utilization of siliceous–aluminous fly ash and cement for solidification of marine sediments. Constr Build Mater 5:856–863

    Article  Google Scholar 

  42. SETRA (2000) Traitement des sols à la chaux et/ou liants hydrauliques–application à la réalisations des assises des chausses. LCPC Edition

  43. Tremblay H (1998) Amélioration mécanique et prédiction de la compressibilité des sols fins du Québec. Thèse de doctorat à l’Université Laval, Québec, p 1998

  44. NF P 98–114-3 (2001) Roadway foundations–methodology for laboratory study of materials treated with hydraulic binders–Part 3: Soils treated with hydraulic binders possibly combined with lime. Association Française de Normalisation

  45. Le Runigo B (2008) Durabilité du limon de Jossigny traité à la chaux et soumis à différentes sollicitations hydriques: comportement physico-chimique, microstructural, hydraulique et mécanique. Thèse de doctorat, École Centrale de Nantes, Nantes, p 2008

Download references

Acknowledgments

This work is undertaken in the framework of Europe project PRISMA “Promoting Integrated Sediment Management” for the aim to decrease the environmental harmful effects of river sediment and to increase the economically and ecologically responsible reuse of river sediments. The partners of this project are France, Belgium, Netherlands, and England.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Abdelhafid Kasmi.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kasmi, A., Abriak, NE., Benzerzour, M. et al. Environmental impact and mechanical behavior study of experimental road made with river sediments: recycling of river sediments in road construction. J Mater Cycles Waste Manag 19, 1405–1414 (2017). https://doi.org/10.1007/s10163-016-0529-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10163-016-0529-5

Keywords

Navigation