Skip to main content

Abstract

On the eve of changing laws concerning dredging practices, the recovery of sediments is necessary to create a viable economy for their management. With the evolution of the global environmental context which invites companies to reduce their impact by reusing local materials, dredged sediments represent a potential source of material. Thus, the objective of this study is to develop an ecological concrete via the use of geopolymers that can be poured on site for public works close to the Ports. Recent studies showed that the development of a geopolymer phase when mixing sediments with an alkali reagent is viable due to their mineralogical and chemical composition. However, due to the use of sediments in their natural state, high setting times and shrinkage were observed which could prevent their valorisation. Therefore, this study aims to improve the developed mortars through the co-valorisation of marine sediments with Supplementary Cementitious Materials (SCMs) such as metakaolin and ground granulated blast furnace slag. The sediment-based geopolymer mortars has been analysed through macroscopic and mineralogical tests. The durability has been also studied in order to validate the viable use of sediment based geopolymer mortars. The results showed that the use of metakaolin could be beneficial to improve the compressive strength and durability of the mortars compared to ground granulated blast furnace slag where calcium could be detrimental to the reactions kinetics.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 299.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 379.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Davidovits, J.: Geopolymers: inorganic polymeric new materials. J Therm Anal 37, 1633–1656 (1991)

    Article  Google Scholar 

  2. Van Deventer, J.S.J., Provis, J.L., Duxson, P., Brice, D.G.: Chemical research and climate change as drivers in the commercial adoption of alkali activated materials. Waste Biomass Valor 1, 145–155 (2010)

    Article  Google Scholar 

  3. Duxson, P., Provis, J.L., Lukey, G.C., van Deventer, J.S.J.: The role of inorganic polymer technology in development of “green concrete.” Cem Concr Res 37, 1590–1597 (2007)

    Article  Google Scholar 

  4. Singh, N.B., Middendorf, B.: Geopolymers as an alternative to Portland cement: an overview. Constr. Build. Mater. 237, 117455 (2020)

    Article  Google Scholar 

  5. McLellan, B.C., Williams, R.P., Lay, J., van Riessen, A., Corder, G.D.: Costs and carbon emissions for geopolymer pastes in comparison to ordinary portland cement. J. Clean. Prod. 19(9–10), 1080–1090 (2011)

    Article  Google Scholar 

  6. Karam, R.: Valorisation of non-calcined marine sediments in an alkali-activated binder based on blast furnace slag, Ecole centrale de Nantes (2019)

    Google Scholar 

  7. Ferone, C., et al.: Thermally treated clay sediments as geopolymer source material. Appl. Clay Sci. 107, 195–204 (2015)

    Article  Google Scholar 

  8. Hosseini, S., Brake, N.A., Nikookar, M., Günaydın-Şen, Ö., Snyder, H.A.: Enhanced strength and microstructure of dredged clay sediment-fly ash geopolymer by mechanochemical activation. Constr. Build. Mater. 301, 123984 (2021)

    Article  Google Scholar 

  9. Marsh, A., Heath, A., Patureau, P., Evernden, M., Walker, P.: Phase formation behaviour in alkali activation of clay mixtures. Appl. Clay Sci. 10–21, 175 (2019)

    Google Scholar 

  10. Provis, J.L.: Geopolymers and other alkali activated materials: why, how, and what? Mater. Struct. 47(1–2), 11–25 (2013). https://doi.org/10.1617/s11527-013-0211-5

    Article  Google Scholar 

  11. Guo, L., et al.: Sulfate resistance of hybrid fiber reinforced metakaolin geopolymer composites, Composites Part B : Engineering (2020)

    Google Scholar 

  12. Monteiro, L., Saiyouri, N., Yanez-Godoy, H., Saliba, J.: Développement d’un liant écologique par géopolymérisation des sédiments de dragage non-traités, Acad. J. Civil Eng. 40(1) (2022)

    Google Scholar 

  13. Monteiro, L., Saiyouri, N., Yanez-Godoy, H., Saliba, J.: Optimisation par plan de mélange de la résistance mécanique d’un liant géopolymère à partir de sédiment de dragage, Acad. J. Civil Eng. 40(1) (2022)

    Google Scholar 

  14. Geopolymer chemistry and applications, Institute Geopolymer, 5th edition (2015)

    Google Scholar 

  15. Capasso, I., Liguori, B., Ferone, C., Caputo, D., Cioffi, R.: Strategies for the valorization of soil waste by geopolymer production: An overview J. Cleaner Prod. 288, 125646 (2021)

    Google Scholar 

  16. Fawer, M., Concannon, M., Rieber, W.: Life cycle inventories for the production of sodium silicates. The International Journal of Life Cycle Assessment 4(4), (1999). https://doi.org/10.1007/BF02979498

  17. Silva, M.G.d., Gomes, V., Saade, M.R.M.: The contribution of life-cycle assessment to environmentally preferable concrete mix selection for breakwater applications. Ambiente Construído (2018)

    Google Scholar 

  18. Massaad, G., Rozière, E., Loukili, A., Izoret, L.: Advanced testing and performance specifications for the cementitious materials under external sulfate attacks. Construct. Build. Mater. 127, 918–931 (2016)

    Google Scholar 

  19. Rovnaník, P.: Effect of curing temperature on the development of hard structure of metakaolin-based geopolymer, Constr. Build. Mater. 99, 144–148 (2010)

    Google Scholar 

  20. Yang, T., Zhu, H., Zhang, Z.: Influence of fly ash on the pore structure and shrinkage characteristics of metakaolin-based geopolymer pastes and mortars, Constr. Build. Mater. 153, 284–293 (2017)

    Google Scholar 

  21. Criado, M., Fernández-Jiménez, A., Palomo, A.: Alkali activation of fly ash: effect of the SiO2 /Na2 O ratio: Part I: FTIR study. Microporous Mesoporous Mater 106, 180–191 (2007)

    Article  Google Scholar 

  22. Yip, C.K., Lukey, G.C., Provis, J.L., van Deventer, J.S.J.: Effect of calcium silicate sources on geopolymerisation. Cem. Concr. Res. 38(4), 554–564 (2008)

    Article  Google Scholar 

  23. Zhao, X., Liu, C., Zuo, L., Wang, L., Zhu, Q., Wang, M.: Investigation into the effect of calcium on the existence form of geopolymerized gel product of fly ash based geopolymers. Cement Concr. Compos. 103, 279–292 (2019)

    Article  Google Scholar 

  24. Kouta, N., Saliba, J., Saiyouri, N.: Effect of flax fibers on early age shrinkage and cracking of earth concrete, Construct. Build. Mater. 254, 119315 (2020)

    Google Scholar 

  25. Ngo, D.C., Saliba, J., Saiyouri, N., Sbartaï, Z.M.: Design of a soil concrete as a new building material – effect of clay and hemp proportions. J. Build. Eng. 32, 101553 (2020)

    Google Scholar 

  26. Fardoun, H., Saliba, J., Coureau, J.-L., Cointe N., Saiyouri, A.: Long-term deformations and mechanical properties of fine recycled aggregate earth concrete. Appl. Sci. 130, 104527 (2022)

    Google Scholar 

  27. Bumanis, G., Bajare, D., Korjakins, A., Vaičiukynienė, D.: Sulfate and Freeze-Thaw Resistance of Porous Geopolymer Based on Waste Clay and Aluminum Salt Slag 12(9), 1140 (2022)

    Google Scholar 

  28. Yang, T., Gao, X., Zhang, J., Zhuang, X., Wang, H., Zhang, Z.: Sulphate resistance of one-part geopolymer synthesized by calcium carbide residue-sodium carbonate-activation of slag, Composites Part B: Eng. 242, 110024 (2022)

    Google Scholar 

  29. Muñiz-Villarreal, M.S., Manzano-Ramírez, A., Sampieri-Bulbarela, S., Gasca-Tirado, J.R., Reyes-Araiza, J.L., Rubio-Ávalos, J.C.: The effect of temperature on the geopolymerization process of a metakaolin-based geopolymer. Mater. Lett. 65(6), 995–998 (2011)

    Article  Google Scholar 

Download references

Acknowledgments

This work is carried out within the framework of the ValoSed project financed by the Nouvelle Aquitaine region and the FNTP. Acknowledments to all the partners : New Aquitaine Region, FNTP, Grand Port Maritime de Bordeaux, SIBA, Grand Port Maritime de Bayonne, Grand Port Maritime de la Rochelle, Eiffage, NGE, Spie Batignolles and Solétanche Bachy.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lisa Monteiro .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Monteiro, L., Saliba, J., Yanez-Godoy, H., Saiyouri, N. (2023). Strength and Durability Assessment of Geopolymer Mortars Based on Non-calcined Dredged Sediments. In: Jędrzejewska, A., Kanavaris, F., Azenha, M., Benboudjema, F., Schlicke, D. (eds) International RILEM Conference on Synergising Expertise towards Sustainability and Robustness of Cement-based Materials and Concrete Structures. SynerCrete 2023. RILEM Bookseries, vol 44. Springer, Cham. https://doi.org/10.1007/978-3-031-33187-9_36

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-33187-9_36

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-33186-2

  • Online ISBN: 978-3-031-33187-9

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics