Skip to main content

Advertisement

Log in

Formulation of mortars based on thermally treated sediments

  • ORIGINAL ARTICLE
  • Published:
Journal of Material Cycles and Waste Management Aims and scope Submit manuscript

Abstract

To successfully transition any economy towards sustainable development requires reducing the consumption of raw materials while maintaining production levels. In the French construction sector, nearly 55% of extracted materials are aggregates. A potential solution to decreasing the carbon footprint of the construction sector and reducing the consumption of raw materials consists in recovering industrial byproducts, in particular reclaiming dredged sediments for use as a mineral component in mortar formulas. However, these sediments require adequate and optimal pretreatment to be implemented effectively. Several processing techniques have thus far been applied to improve specific physicochemical properties. Heat treatment through calcination has proven effective in removing organic matter and activating the pozzolanic properties of the sediments. The present study demonstrates that optimizing the heat treatment of marine sediment additives affects the physicomechanical and environmental properties of mortar. Compared with a standard reference mortar, substituting an optimum portion of cement with sediments that were calcination-treated at 750 °C achieved at least identical and even improved mechanical properties of the cement matrix. Incorporating up to 20% of calcined sediment as a cement substitute did not affect the durability of the mortar. In fact, a cement substitution of 10% improved the accelerated carbonation behavior. The characteristics of these mortar formulas were evaluated from an environmental and life cycle point of view and compared with inert waste reference thresholds (in accordance with the French inert waste storage facilities directive of 2010).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Agence de l’eau Artois-Picardie, Methode de gestion et de réutilisation des sédiments pollués, p. 1–126, 2000

  2. Dubois V, Abriak NE, Zentar R, Ballivy G (2009) The use of marine sediments as a pavement base material. Waste Manag 29(2):774–782

    Article  Google Scholar 

  3. Zentar R, Dubois V, Abriak NE (2008) Mechanical behaviour and environmental impacts of a test road built with marine dredged sediments. Resour Conserv Recycl 52(6):947–954

    Article  Google Scholar 

  4. Cappuyns V, Deweirt V, Rousseau S (2015) Dredged sediments as a resource for brick production: possibilities and barriers from a consumers’ perspective. Waste Manag 38:372–380

    Article  Google Scholar 

  5. Achour R (2013) Valorisation et Caractérisation de la Durabilité d’un Matériau Routier et d’un Béton à Base de Sédiments de Dragage

  6. Oh H, Lee J, Banthia N, Talukdar S (2011) An experimental study of the physicochemical properties of a cement matrix containing dredged materials. Mater Sci Appl 02(07):847–857

    Google Scholar 

  7. Dalton JL, Gardner KH, Seager TP, Weimer ML, Spear JC, Magee BJ (2004) Properties of Portland cement made from contaminated sediments. Resour Conserv Recycl 41(3):227–241

    Article  Google Scholar 

  8. Samara M, Lafhaj Z, Chapiseau C (2009) Valorization of stabilized river sediments in fired clay bricks: factory scale experiment. J Hazard Mater 163(2):701–710

    Article  Google Scholar 

  9. El Fgaier F, Lafhaj Z, Chapiseau C (2013) Use of clay bricks incorporating treated river sediments in a demonstrative building: Case study. Constr Build Mater 48:160–165

    Article  Google Scholar 

  10. Said I, Missaoui A, Lafhaj Z (2015) Reuse of Tunisian marine sediments in paving blocks: factory scale experiment. J Cleaner Product 102:66–77

    Article  Google Scholar 

  11. Rozière E, Samara M, Loukili A, Damidot D (2015) Valorisation of sediments in self-consolidating concrete: mix-design and microstructure. Constr Build Mater 81:1–10

    Article  Google Scholar 

  12. Miraoui M, Zentar R, Abriak NE (2012) Road material basis in dredged sediment and basic oxygen furnace steel slag. Constr Build Mater 30:309–319

    Article  Google Scholar 

  13. Belas N, Aggoun S, Benaissa A, Kheirbek A (2011) Valorisation des déchets naturels dans l’élaboration des nouveaux bétons et matériaux de construction. Abstract, pp 1–6

  14. Limeira J, Etxeberria M, Agulló L, Molina D (2011) Mechanical and durability properties of concrete made with dredged marine sand. Constr Build Mater 25(11):4165–4174

    Article  Google Scholar 

  15. San Nicolas R (2011) Approche performantielle des bétons avec métakaolins obtenus par calcination flash. Dissertation, University of Toulouse III-Paul Sabatier, France

  16. Rodríguez O, Kacimi L, López-Delgado A, Frías M, Guerrero A (2013) Characterization of Algerian reservoir sludges for use as active additions in cement: new pozzolans for eco-cement manufacture. Constr Build Mater 40:275–279

    Article  Google Scholar 

  17. Roux L, Unikowski Z (1980) Mise en évidence de l’ influence des fines argileuses dans les granulats à béton, pp 101–108

  18. Dubois V (2006) Etude du comportement physico-mécanique et caractérisation environnementale des sédiments marins—Valorisation en technique routière, dissertation, University of ARTOIS, France

  19. Tran NT (2009) Valorisation de sédiments marins et fluviaux en technique routière. Dissertation, Ecole Mines de Douai, France

  20. Dang TA, Kamali-Bernard S, Prince WA (2013) Design of new blended cement based on arine dredged sediment. Constr Build Mater 41:602–611

    Article  Google Scholar 

  21. Salvador S, Pons O (2000) Semi-mobile flash dryer/calciner unit to manufacture pozzolana from raw clay soils—application to soil stabilisation. Constr Build Mater 14(2):109–117

    Article  Google Scholar 

  22. Anger B, Moulin I, Perin E, Thery F, Levacher D (2014) Utilisation de sédiments fins de barrage dans la fabrication de mortiers. XIIIèmes JNGCGC, Dunkerque, pp 953–960

  23. Benkaddour M, Kazi Aoual F, Semcha A (2009) Durabilité des mortiers à base de pouzzolane naturelle et de pouzzolane artificielle. Rev Nat Tecnol 1:63–73

    Google Scholar 

  24. Cabane N (2004) Sols traités à la chaux et aux liants hydrauliques: Contribution à l’identification et à l’analyse des éléments perturbateurs de la stabilisation

  25. Gastaldini ALG, Hengen MF, Gastaldini MCC, do Amaral FD, Antolini MB, Coletto T (2015) The use of water treatment plant sludge ash as a mineral addition. Constr Build Mater 94:513–520

    Article  Google Scholar 

  26. Bouamrane A, Elouazzani DC, Barna LT, Mansouri K (2014) Valorisation des boues de papeterie comme matières premières secondaires dans les mortiers de ciment. Portland J Mater Environ Sci 5(2):605–614

    Google Scholar 

  27. Tironi A, Trezza MA, Scian AN, Irassar EF (2013) Assessment of pozzolanic activity of different calcined clays. Cem Concr Compos 37:319–327

    Article  Google Scholar 

  28. Bolomey J (1935) Granulation et prévision de la résistance probable des bétons. Travaux 19(30):228–232

    Google Scholar 

  29. Mazars J (1984) Application de la mécanique de l’endommagement au comportement non linéaire et à la rupture du béton de structure

  30. Maso JC (1996) Influence of the interfacial transition zone on composite mechanical properties. RILEM Rep 11:103–116

    Google Scholar 

  31. Park C-K (2000) Hydration and solidification of hazardous wastes containing heavy metals using modified cementitious materials. Cem Concr Res 30(3):429–435

    Article  Google Scholar 

  32. Minocha AK, Neeraj J, Verma CL (2003) Effect of organic materials on the solidification of heavy sludge. Constr Build Mater 17:77–81

    Article  Google Scholar 

  33. Yousuf M, Mollah A, Vempati RK, Lin T-C, Cocke DL (1995) The interfacial chemistry of solidification/stabilization of metals in cement and pozzolanic material systems. Waste Manag 15(2):137–148

    Article  Google Scholar 

  34. Cyr M, Lawrence P, Ringot E (2005) Mineral admixtures in mortars. Cem Concr Res 35(4):719–730

    Google Scholar 

  35. Kim YH, Bae B, Choung YK (2005) Optimization of biological phosphorus removal from contaminated sediments with phosphate-solubilizing microorganisms. J Biosci Bioeng 99(1):23–29

    Article  Google Scholar 

  36. Mulligan CN, Yong RN, Gibbs BF (2001) Remediation technologies for metal-contaminated soils and groundwater: an evaluation. Eng Geol 60(1):193–207

    Article  Google Scholar 

  37. Lin J, Zhong Y, Fan H (2017) Chemical treatment of contaminated sediment for phosphorus control and subsequent effects on ammonia-oxidizing and ammonia-denitrifying microorganisms and on submerged macrophyte revegetation. Environ Sci Pollut Res 24(1):1007–1018

    Article  Google Scholar 

  38. Okoli CP, Diagboya PN, Anigbogu IO et al (2017) Competitive biosorption of Pb(II) and Cd(II) ions from aqueous solutions using chemically modified moss biomass (Barbula lambarenensis). Environ Earth Sci 76(1):33

    Article  Google Scholar 

  39. Illuri HK (2007) Development of soil-eps mixes for geotechnical applications. Queensland University of Technology, Australia

    Google Scholar 

  40. Song Y (2016) Traitement des sédiments de dragage: processus et couplages. Dissertation, University of Le Havre, France

  41. Yoo J-C, Yang J-S, Jeon E-K et al (2015) Enhanced-electrokinetic extraction of heavy metals from dredged harbor sediment. Environ Sci Pollut Res 22(13):9912–9921

    Article  Google Scholar 

  42. Agostini F, Skoczylas F, Lafhaj Z (2007) About a possible valorisation in cementitious materials of polluted sediments after treatment. Cem Concr Compos 29(4):270–278

    Article  Google Scholar 

  43. Ramaroson J, Dia M, Dirion JL, Nzihou A, Depelsenaire G (2012) Thermal treatment of dredged sediment in a rotary kiln: Investigation of structural changes. Ind Eng Chem Res 51(21):7146–7152

    Article  Google Scholar 

  44. Ramaroson J, Dia M, Dirion J-L, Nzihou A, Depelsenaire G (2012) Thermal treatment of dredged sediment in a rotary kiln: investigation of structural changes. Ind Eng Chem Res 51(21):7146–7152

    Article  Google Scholar 

  45. Union Nationale des Industries de Carrières et Matériaux de construction and UNICEM (2015) Rapport et statistiques sur les granulats. Technical report

  46. Millrath K, Kozlova S, Shimanovich S, Meyer C (2001) Beneficial use of dredge material. Technical report. Columbia University, New York, NY

  47. Xu Y, Yan C, Xu B, Ruan X, Wei Z (2014) The use of urban river sediments as a primary raw material in the production of highly insulating brick. Ceram Int 40(6):8833–8840

    Article  Google Scholar 

  48. Benslafa FKA, Kerdal D, Ameur M, Mekerta B, Semcha A (2015) Durability of mortars made with dredged sediments. Procedia Eng 118:240–250

    Article  Google Scholar 

  49. Institute for Prospective Technological Studies Sustainable Production and Consumption Unit European IPPC Bureau (2013) Production of Cement, Lime and Magnesium Oxide. Eur Comm, Technical report

  50. (EC) European Commission (2009) Report. Reference document on the best available techniques. Management of tailings and waste-rock in mining activities. Ref Doc Best Available Tech, January, 511

  51. Rozière E, Samara M, Loukili A, Damidot D (2015) Valorisation of sediments in self-consolidating concrete: mix-design and microstructure. Constr Build Mater 81:1–10

    Article  Google Scholar 

Download references

Acknowledgements

The authors thank the Port of Dunkirk for the dredging operation in the Europe, European Regional Development Fund (ERDF), Interreg IVA for their financial support to the project.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Walid Maherzi.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Benzerzour, M., Maherzi, W., Amar, M.A.A. et al. Formulation of mortars based on thermally treated sediments. J Mater Cycles Waste Manag 20, 592–603 (2018). https://doi.org/10.1007/s10163-017-0626-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10163-017-0626-0

Keywords

Navigation