Skip to main content

Advertisement

Log in

Eco-friendly polyurethane foams based on castor polyol reinforced with açaí residues for building insulation

  • ORIGINAL ARTICLE
  • Published:
Journal of Material Cycles and Waste Management Aims and scope Submit manuscript

Abstract

The search for environmental sustainability has stimulated the construction sector to look for natural materials with an ecological footprint, high strength/weight ratio, and better thermal and mechanical properties. Besides those properties, water absorption studies are necessary to reach these requirements. This research proposes to evaluate changes in the visual appearance, density, chemical structure, morphology, water absorption, porosity, and thermal and mechanical properties in castor oil-based polyurethane reinforced with açaí waste (5–20 wt%). Results exposed that the addition of fiber to the PU reduced the pore size due to the increased cross-link density of PU foams caused by incorporating additional fiber groups, reacting with isocyanate groups. Also, the fibers were hydrogen bonded to the PU molecular chains via the interaction between the O–H of the fibers and the N–H of the PU foam. The water absorption of the biocomposites increased with time and with fiber loading; however, it did not surpass pure PU. The fiber addition improved crystallinity and hydrophobicity. The compressive strength presented a decreasing trend, while, for the impact test, an increase was observed proportionally to the açaí residue content. Thus, the developed biocomposites can be a possibility for alternative eco-efficient building insulators.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Adamus J, Pomada M (2020) Selected issues of choosing composite materials for window supporting beams. J Build Eng 32:101542. https://doi.org/10.1016/j.jobe.2020.101542

    Article  Google Scholar 

  2. Andersons J, Kirpluks M, Cabulis P et al (2020) Bio-based rigid high-density polyurethane foams as a structural thermal break material. Constr Build Mater 260:120471. https://doi.org/10.1016/j.conbuildmat.2020.120471

    Article  Google Scholar 

  3. Ikutegbe CA, Farid MM (2020) Application of phase change material foam composites in the built environment: a critical review. Renew Sustain Energy Rev 131:110008. https://doi.org/10.1016/j.rser.2020.110008

    Article  Google Scholar 

  4. Kuranchie C, Yaya A, Bensah YD (2021) The effect of natural fibre reinforcement on polyurethane composite foams—a review. Sci Afr 11:e00722. https://doi.org/10.1016/j.sciaf.2021.e00722

    Article  Google Scholar 

  5. Jamaluddin JF, Firouzi A, Islam MR, Yahaya ANA (2020) Effects of luffa and glass fibers in polyurethane-based ternary sandwich composites for building materials. SN Appl Sci 2:1–10. https://doi.org/10.1007/s42452-020-3037-0

    Article  Google Scholar 

  6. Pessôa TS, de Lima Ferreira LE, da Silva MP et al (2019) Açaí waste beneficing by gasification process and its employment in the treatment of synthetic and raw textile wastewater. J Clean Prod 240:118047. https://doi.org/10.1016/j.jclepro.2019.118047

    Article  Google Scholar 

  7. Martins LS, Silva NGS, Claro AM et al (2021) Insight on açai seed biomass economy and waste cooking oil: eco-sorbent castor oil-based. J Environ Manag 293:112803. https://doi.org/10.1016/j.jenvman.2021.112803

    Article  Google Scholar 

  8. Ganguly P, Sengupta S, Das P, Bhowal A (2020) Valorization of food waste: extraction of cellulose, lignin and their application in energy use and water treatment. Fuel 280:118581. https://doi.org/10.1016/j.fuel.2020.118581

    Article  Google Scholar 

  9. Barszczewska-Rybarek I, Jaszcz K, Chladek G et al (2021) Characterization of changes in structural, physicochemical and mechanical properties of rigid polyurethane building insulation after thermal aging in air and seawater. Polym Bull. https://doi.org/10.1007/s00289-021-03632-x

    Article  Google Scholar 

  10. Manobala KS, Prabhakaran S, Gautham R et al (2020) Investigation of mechanical and thermal behaviour of natural sandwich composite materials for partition walls. Int J Res Rev 7:211–216

    Google Scholar 

  11. Gurgel D, Bresolin D, Sayer C et al (2021) Flexible polyurethane foams produced from industrial residues and castor oil. Ind Crops Prod 164:113377. https://doi.org/10.1016/j.indcrop.2021.113377

    Article  Google Scholar 

  12. Bresolin D, Valério A, de Oliveira D et al (2018) Polyurethane foams based on biopolyols from castor oil and glycerol. J Polym Environ 26:2467–2475. https://doi.org/10.1007/s10924-017-1138-7

    Article  Google Scholar 

  13. Sharma C, Edatholath SS, Raman Unni A et al (2016) A pre-polyaddition mediation of castor oil for polyurethane formation. J Appl Polym Sci 133:1–9. https://doi.org/10.1002/app.43964

    Article  Google Scholar 

  14. Hussain Shaik A, Jain R, Manchikanti S et al (2020) Reinstating structural stability of castor oil based flexible polyurethane foam using glycerol. ChemistrySelect 5:3959–3964. https://doi.org/10.1002/slct.202000784

    Article  Google Scholar 

  15. Shaik AH, Banerjee S, Rahaman A et al (2021) One-step synthesis and characteristics of LiOH-castor oil based stable polyurethane foam. J Polym Res 28:1–9. https://doi.org/10.1007/s10965-021-02580-4

    Article  Google Scholar 

  16. Sharma C, Kumar S, Unni AR et al (2014) Foam stability and polymer phase morphology of flexible polyurethane foams synthesized from castor oil. J Appl Polym Sci 131:8420–8427. https://doi.org/10.1002/app.40668

    Article  Google Scholar 

  17. Peyrton J, Avérous L (2021) Structure-properties relationships of cellular materials from biobased polyurethane foams. Mater Sci Eng R Rep. https://doi.org/10.1016/j.mser.2021.100608

    Article  Google Scholar 

  18. Shao H, Zhang Q, Liu H et al (2020) Renewable natural resources reinforced polyurethane foam for use of lightweight thermal insulation. Mater Res Express. https://doi.org/10.1088/2053-1591/ab8d87

    Article  Google Scholar 

  19. Calderoń V, Gutieŕrez-Gonzaĺez S, Gadea J et al (2018) Construction applications of polyurethane foam wastes. Recycl Polyurethane Foam. https://doi.org/10.1016/b978-0-323-51133-9.00010-3

    Article  Google Scholar 

  20. Gandara M, Mulinari DR, Monticeli FM, Capri MR (2020) Sugarcane bagasse fibers reinforced in polyurethane for sorption of vegetal oil. J Nat Fibers. https://doi.org/10.1080/15440478.2019.1710653

    Article  Google Scholar 

  21. Mosiewicki MA, Dell’Arciprete GA, Aranguren MI, Marcovich NE (2009) Polyurethane foams obtained from castor oil-based polyol and filled with wood flour. J Compos Mater 43:3057–3072. https://doi.org/10.1177/0021998309345342

    Article  Google Scholar 

  22. Martins LS, Maciel F, Mulinari DR (2020) Influence of the granulometry and fiber content of palm residues on the diesel S-10 oil sorption in polyurethane/palm fiber biocomposites. Results Mater. https://doi.org/10.1016/j.rinma.2020.100143

    Article  Google Scholar 

  23. Silva NGS, Cortat LICO, Orlando D, Mulinari DR (2020) Evaluation of rubber powder waste as reinforcement of the polyurethane derived from castor oil. Waste Manag 116:131–139. https://doi.org/10.1016/j.wasman.2020.07.032

    Article  Google Scholar 

  24. Li M, Pu Y, Thomas VM et al (2020) Recent advancements of plant-based natural fiber-reinforced composites and their applications. Compos Part B Eng. https://doi.org/10.1016/j.compositesb.2020.108254

    Article  Google Scholar 

  25. Hung Anh LD, Pásztory Z (2021) An overview of factors influencing thermal conductivity of building insulation materials. J Build Eng. https://doi.org/10.1016/j.jobe.2021.102604

    Article  Google Scholar 

  26. Zanini NC, de Souza AG, Barbosa RFS et al (2021) A novel hybrid polyurethane composites with ZnO particles and sheath palm residues: synergistic effect. Polym Compos 42:532–542. https://doi.org/10.1002/pc.25845

    Article  Google Scholar 

  27. Vieira Amorim F, José Ribeiro Padilha R, Maria Vinhas G et al (2021) Development of hydrophobic polyurethane/castor oil biocomposites with agroindustrial residues for sorption of oils and organic solvents. J Colloid Interface Sci 581:442–454. https://doi.org/10.1016/j.jcis.2020.07.091

    Article  Google Scholar 

  28. Husainie SM, Deng X, Ghalia MA et al (2021) Natural fillers as reinforcement for closed-molded polyurethane foam plaques: mechanical, morphological, and thermal properties. Mater Today Commun 27:102187. https://doi.org/10.1016/j.mtcomm.2021.102187

    Article  Google Scholar 

  29. Moshi AAM, Ravindran D, Bharathi SRS et al (2020) Characterization of a new cellulosic natural fiber extracted from the root of Ficus religiosa tree. Int J Biol Macromol 142:212–221. https://doi.org/10.1016/j.ijbiomac.2019.09.094

    Article  Google Scholar 

  30. Stanzione M, Oliviero M, Cocca M et al (2020) Tuning of polyurethane foam mechanical and thermal properties using ball-milled cellulose. Carbohydr Polym 231:115772. https://doi.org/10.1016/j.carbpol.2019.115772

    Article  Google Scholar 

  31. Cortat LO, Zanini NC, Barbosa RFS et al (2021) A sustainable perspective for macadamia nutshell residues revalorization by green composites development. J Polym Environ. https://doi.org/10.1007/s10924-021-02080-y

    Article  Google Scholar 

  32. Icduygu MG, Asilturk M, Yalcinkaya MA et al (2019) Three-dimensional nano-morphology of carbon nanotube/epoxy filled poly(methyl methacrylate) microcapsules. Materials (Basel) 12:1–26

    Article  Google Scholar 

  33. Barbosa ADM, Rebelo VSM, Martorano LG, Giacon VM (2019) Characterization of acai waste particles for civil construction use. Rev Mater. https://doi.org/10.1590/s1517-707620190003.0750

    Article  Google Scholar 

  34. Danso H, Martinson DB, Ali M, Williams J (2015) Effect of fibre aspect ratio on mechanical properties of soil building blocks. Constr Build Mater 83:314–319. https://doi.org/10.1016/j.conbuildmat.2015.03.039

    Article  Google Scholar 

  35. Maia LS, Zanini NC, Claro AM et al (2021) Eco-friendly foams of castor oil based-polyurethane with Artemisia residue fillers for discarded vegetable oil sorption. J Appl Polym Sci. https://doi.org/10.1002/app.51259

    Article  Google Scholar 

  36. Gonçalves Junior AC, Coelho GF, Schwantes D et al (2016) Biosorption of Cu (II) and Zn (II) with açaí endocarp Euterpe oleracea M. in contaminated aqueous solution. Acta Sci Technol 38:361–370. https://doi.org/10.4025/actascitechnol.v38i3.28294

    Article  Google Scholar 

  37. Tavares FDCF, De Almeida MDC, da Silva JAP et al (2020) Thermal treatment of açaí (Euterpe oleracea) fiber for composite reinforcement. Polimeros. https://doi.org/10.1590/0104-1428.09819

    Article  Google Scholar 

  38. Olcay H, Kocak ED (2021) Rice plant waste reinforced polyurethane composites for use as the acoustic absorption material. Appl Acoust 173:107733. https://doi.org/10.1016/j.apacoust.2020.107733

    Article  Google Scholar 

  39. Członka S, Strakowska A, Pospiech P, Strzelec K (2020) Effects of chemically treated eucalyptus fibers on mechanical, thermal and insulating properties of polyurethane composite foams. Materials (Basel). https://doi.org/10.3390/MA13071781

    Article  Google Scholar 

  40. Protzek GR, Magalhães WLE, Bittencourt PRS et al (2019) The influence of fiber size on the behavior of the araucaria pine nut shell/PU composite. Polimeros 29:1–9. https://doi.org/10.1590/0104-1428.01218

    Article  Google Scholar 

  41. Soberi NSM, Rozyanty AR, Zainuddin F, Osman AF (2019) Influence of filler content and mixing time on the properties and morphology of kenaf/polyurethane foam composites. IOP Conf Ser Mater Sci Eng. https://doi.org/10.1088/1757-899X/701/1/012043

    Article  Google Scholar 

  42. Pearson A, Naguib HE (2017) Novel polyurethane elastomeric composites reinforced with alumina, aramid, and poly(p-phenylene-2,6-benzobisoxazole) short fibers, development and characterization of the thermal and dynamic mechanical properties. Compos Part B Eng 122:192–201. https://doi.org/10.1016/j.compositesb.2017.04.017

    Article  Google Scholar 

  43. Costa ILM, Martins LS, Maia LS, Mulinari DR (2021) Impact of the Jatoba shell residue amount on polyurethane foams based on castor polyol. J Mater Cycles Waste Manag 23:1431–1444. https://doi.org/10.1007/s10163-021-01224-5

    Article  Google Scholar 

  44. Zanini NC, de Souza AG, Barbosa RFS et al (2021) Eco-friendly composites of polyurethane and sheath palm residues. J Cell Plast. https://doi.org/10.1177/0021955X20987150

    Article  Google Scholar 

  45. Oushabi A, Sair S, Abboud Y et al (2017) An experimental investigation on morphological, mechanical and thermal properties of date palm particles reinforced polyurethane composites as new ecological insulating materials in building. Case Stud Constr Mater 7:128–137. https://doi.org/10.1016/j.cscm.2017.06.002

    Article  Google Scholar 

  46. Andersons J, Kirpluks M, Cabulis U (2020) Reinforcement efficiency of cellulose microfibers for the tensile stiffness and strength of rigid low-density polyurethane foams. Materials (Basel) 13:1–15. https://doi.org/10.3390/ma13122725

    Article  Google Scholar 

  47. Członka S, Strakowska A, Strzelec K et al (2020) Bio-based polyurethane composite foams with improved mechanical, thermal, and antibacterial properties. Materials (Basel) 13:1–20. https://doi.org/10.3390/ma13051108

    Article  Google Scholar 

  48. Huang S, Fu Q, Yan L, Kasal B (2021) Characterization of interfacial properties between fibre and polymer matrix in composite materials—a critical review. J Mater Res Technol 13:1441–1484. https://doi.org/10.1016/j.jmrt.2021.05.076

    Article  Google Scholar 

  49. Zhou Y, Fan M, Chen L (2016) Interface and bonding mechanisms of plant fibre composites: an overview. Compos Part B Eng 101:31–45. https://doi.org/10.1016/j.compositesb.2016.06.055

    Article  Google Scholar 

  50. Costa ILM, Monticeli FM, Mulinari DR (2020) Polyurethane foam reinforced with fibers pineaplle crown biocomposites for sorption of vegetable oil. Fibers Polym 21:1832–1840. https://doi.org/10.1007/s12221-020-9979-4

    Article  Google Scholar 

  51. Sair S, Oushabi A, Kammouni A et al (2018) Mechanical and thermal conductivity properties of hemp fiber reinforced polyurethane composites. Case Stud Constr Mater 8:203–212. https://doi.org/10.1016/j.cscm.2018.02.001

    Article  Google Scholar 

  52. Sylwia C, Anna S, Kairyte Agnè KA (2020) Nutmeg filler as a natural compound for the production of polyurethane composite foams with antibacterial and anti-aging properties. Polym Test 86:1–13. https://doi.org/10.1016/j.polymertesting.2020.106479

    Article  Google Scholar 

  53. Wang J, Geng G (2015) Highly recyclable superhydrophobic sponge suitable for the selective sorption of high viscosity oil from water. Mar Pollut Bull 97:118–124. https://doi.org/10.1016/j.marpolbul.2015.06.026

    Article  Google Scholar 

  54. Calegari EP, Porto JS, Angrizani CC et al (2017) Reuse of waste paper and rice hulls as filler in polymeric matrix composites. Rev Mater. https://doi.org/10.1590/s1517-707620170002.0179

    Article  Google Scholar 

  55. Radzi AM, Sapuan SM, Jawaid M, Mansor MR (2019) Water absorption, thickness swelling and thermal properties of roselle/sugar palm fibre reinforced thermoplastic polyurethane hybrid composites. J Mater Res Technol 8:3988–3994. https://doi.org/10.1016/j.jmrt.2019.07.007

    Article  Google Scholar 

  56. Atiqah A, Jawaid M, Ishak MR, Sapuan SM (2017) Moisture absorption and thickness swelling behaviour of sugar palm fibre reinforced thermoplastic polyurethane. Procedia Eng 184:581–586. https://doi.org/10.1016/j.proeng.2017.04.142

    Article  Google Scholar 

  57. Zanini N, Carneiro E, Menezes L et al (2021) Palm fibers residues from agro-industries as reinforcement in biopolymer filaments for 3D-printed scaffolds. Fibers Polym. https://doi.org/10.1007/s12221-021-0936-7

    Article  Google Scholar 

  58. Paixão WA, Martins LS, Zanini NC, Mulinari DR (2020) Modification and characterization of cellulose fibers from palm coated by ZrO2·nHO particles for sorption of dichromate ions. J Inorg Organomet Polym Mater. https://doi.org/10.1007/s10904-019-01415-6

    Article  Google Scholar 

  59. Raja AKA, Geethan KAV, Kumar SS, Kumar PS (2021) Influence of mechanical attributes, water absorption, heat deflection features and characterization of natural fibers reinforced epoxy hybrid composites for an engineering application. Fibers Polym. https://doi.org/10.1007/s12221-021-0222-8

    Article  Google Scholar 

  60. Yang J, Ching YC, Chuah CH (2019) Applications of lignocellulosic fibers and lignin in bioplastics: a review. Polymers (Basel) 11:1–26

    Google Scholar 

  61. Kucuk F, Sismanoglu S, Kanbur Y, Tayfun U (2020) Effect of silane-modification of diatomite on its composites with thermoplastic polyurethane. Mater Chem Phys 256:123683. https://doi.org/10.1016/j.matchemphys.2020.123683

    Article  Google Scholar 

  62. Huang G, Chen F (2019) Reaction of jute fiber with isocyanate component for the production of plant fiber-reinforced polyurethane composites. Cellulose 26:7297–7308. https://doi.org/10.1007/s10570-019-02612-9

    Article  Google Scholar 

  63. de Azevedo ARG, Marvila MT, Tayeh BA et al (2021) Technological performance of açaí natural fibre reinforced cement-based mortars. J Build Eng 33:101675. https://doi.org/10.1016/j.jobe.2020.101675

    Article  Google Scholar 

  64. Saleem J, Adil Riaz M, Gordon M (2018) Oil sorbents from plastic wastes and polymers: a review. J Hazard Mater 341:424–437. https://doi.org/10.1016/j.jhazmat.2017.07.072

    Article  Google Scholar 

  65. Asim M, Paridah MT, Chandrasekar M et al (2020) Thermal stability of natural fibers and their polymer composites. Iran Polym J 29:625–648. https://doi.org/10.1007/s13726-020-00824-6

    Article  Google Scholar 

  66. Członka S, Strąkowska A, Pospiech P, Strzelec K (2020) Effects of chemically treated eucalyptus fibers on mechanical, thermal and insulating properties of polyurethane composite foams. Materials (Basel) 13:1781. https://doi.org/10.3390/ma13071781

    Article  Google Scholar 

  67. Gu R, Sain MM, Konar SK (2013) A feasibility study of polyurethane composite foam with added hardwood pulp. Ind Crops Prod 42:273–279. https://doi.org/10.1016/j.indcrop.2012.06.006

    Article  Google Scholar 

  68. Gu R, Khazabi M, Sain M (2011) Fiber reinforced soy-based polyurethane spray foam insulation. Part 2: Thermal and mechanical properties. BioResources 6:3775–3790

    Google Scholar 

  69. Malik M, Kaur R (2018) Mechanical and thermal properties of castor oil-based polyurethane adhesive: effect of TiO2 filler. Adv Polym Technol 37:24–30. https://doi.org/10.1002/adv.21637

    Article  Google Scholar 

  70. Njuguna JK, Muchiri P, Karuri NW et al (2021) Determination of thermo-mechanical properties of recycled polyurethane from glycolysis polyol. Sci African 12:e00755. https://doi.org/10.1016/j.sciaf.2021.e00755

    Article  Google Scholar 

  71. Członka S, Strąkowska A, Kairytė A (2020) Effect of walnut shells and silanized walnut shells on the mechanical and thermal properties of rigid polyurethane foams. Polym Test. https://doi.org/10.1016/j.polymertesting.2020.106534

    Article  Google Scholar 

  72. Jabber LJY, Grumo JC, Alguno AC et al (2020) Influence of cellulose fibers extracted from pineapple (Ananas comosus) leaf to the mechanical properties of rigid polyurethane foam. Mater Today Proc. https://doi.org/10.1016/j.matpr.2020.07.566

    Article  Google Scholar 

  73. Li J, Jiang J, Xu J et al (2016) Branched polyols based on oleic acid for production of polyurethane foams reinforced with bamboo fiber. Iran Polym J (Eng Ed) 25:811–822. https://doi.org/10.1007/s13726-016-0469-x

    Article  Google Scholar 

  74. Radzi AM, Sapuan SM, Jawaid M, Mansor MR (2017) Influence of fibre contents on mechanical and thermal properties of roselle fibre reinforced polyurethane composites. Fibers Polym 18:1353–1358. https://doi.org/10.1007/s12221-017-7311-8

    Article  Google Scholar 

  75. Afzaluddin A, Jawaid M, Salit MS, Ishak MR (2019) Physical and mechanical properties of sugar palm/glass fiber reinforced thermoplastic polyurethane hybrid composites. J Mater Res Technol 8:950–959. https://doi.org/10.1016/j.jmrt.2018.04.024

    Article  Google Scholar 

  76. Mustafov SD, Sen F, Seydibeyoglu MO (2020) Preparation and characterization of diatomite and hydroxyapatite reinforced porous polyurethane foam biocomposites. Sci Rep 10:1–9. https://doi.org/10.1038/s41598-020-70421-3

    Article  Google Scholar 

  77. Wei J, Kong F, Liu J et al (2018) Effect of sisal fiber and polyurethane admixture on the strength and mechanical behavior of sand. Polymers (Basel) 10:1–15. https://doi.org/10.3390/polym10101121

    Article  Google Scholar 

Download references

Acknowledgements

This research was funded by Fundação Carlos Chagas de Amparo à Pesquisa do Estado do Rio de Janeiro—FAPERJ (E-26/010.101232/2018 and E-26/010.001800/2015).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Daniella R. Mulinari.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 254 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

de Oliveira, B.P., Balieiro, L.C.S., Maia, L.S. et al. Eco-friendly polyurethane foams based on castor polyol reinforced with açaí residues for building insulation. J Mater Cycles Waste Manag 24, 553–568 (2022). https://doi.org/10.1007/s10163-021-01341-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10163-021-01341-1

Keywords

Navigation