Skip to main content
Log in

Polyurethane Foams Based on Biopolyols from Castor Oil and Glycerol

  • Original Paper
  • Published:
Journal of Polymers and the Environment Aims and scope Submit manuscript

Abstract

In this work, the synthesis of biopolyols derived from castor oil and different glycerols was performed by chemical glycerolysis with sodium hydroxide as catalyst at 225 °C. The biopolyol obtained from high purity glycerol led to predominantly MAG formation, whereas the biopolyol produced using crude glycerol, byproduct from biodiesel industry, resulted in higher DAG, TAG and FFA content due to the higher amount of water. Both biopolyols were employed for the synthesis of polyurethane (PU) foams by bulk polymerization using methylene diphenyl diisocyanate (MDI) at different NCO:OH ratios. The foams were evaluated by apparent density, insoluble fraction, Fourier transform infrared spectroscopy, scanning electron microscope and thermogravimetric analysis. The results showed that crude glycerol provided PU foams as much as commercial glycerol, however the characteristics may be different, mainly due to the presence of water in the reaction medium.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Ionescu M (2005) Chemistry and technology of polyols for polyurethanes. Rapra Technology, United Kingdom

    Google Scholar 

  2. Mandal BM (2013) Fundamentals of polymerization. World Scientific Publishing Company, Tuke Link

    Book  Google Scholar 

  3. Tay G-S, Nanbo T, Hatakeyama H, Hatakeyama T (2011) Polyurethane composites derived from glycerol and molasses polyols filled with oil palm empty fruit bunches studied by TG and DMA. Thermochim Acta 525:190–196

    Article  CAS  Google Scholar 

  4. Braun D, Cherdron H, Rehahn M, Ritter H, Volt B (2005) Polymer synthesis: theory and practice: fundamentals, methods, experiments. Springer, New York

    Google Scholar 

  5. Al-Moameri H, Zhao Y, Ghoreishi R, Suppes GJ (2016) Simulation blowing agent performance, cell morphology, and cell pressure in rigid polyurethane foams. Ind Eng Chem Res 55:2336–2344

    Article  CAS  Google Scholar 

  6. Choe KH, Lee DS, Seo WJ, Kim WN (2004) Properties of rigid polyurethane foams with blowing agents and catalysts. Polym J 36:368–373

    Article  CAS  Google Scholar 

  7. Simón D, Borreguero AM, de Lucas A, Rodríguez JF (2015) Valorization of crude glycerol as a novel transesterification agent in the glycolysis of polyurethane foam waste. Polym Degrad Stab 121:126–136

    Article  CAS  Google Scholar 

  8. Zieleniewska M, Leszczyński MK, Kurańska M, Prociak A, Szczepkowski L, Krzyżowska M, Ryszkowska J (2015) Preparation and characterisation of rigid polyurethane foams using a rapeseed oil-based polyol. Ind Crops Prod 74:887–897

    Article  CAS  Google Scholar 

  9. Güner FS, Yağcı Y, Erciyes AT (2006) Polymers from triglyceride oils. Prog Polym Sci 31:633–670

    Article  CAS  Google Scholar 

  10. Kosmela P, Hejna A, Formela K, Haponiuk JT, Piszczyk Ł (2016) Biopolyols obtained via crude glycerol-based liquefaction of cellulose: their structural, rheological and thermal characterization. Cellulose 23:2929–2942. https://doi.org/10.1007/s10570-016-1034-7

    Article  CAS  Google Scholar 

  11. Miao S, Wang P, Su Z, Zhang S (2014) Vegetable-oil-based polymers as future polymeric biomaterials. Acta Biomater 10:1692–1704

    Article  CAS  PubMed  Google Scholar 

  12. Hejna A, Kirpluks M, Kosmela P, Cabulis U, Haponiuk J, Piszczyk Ł (2017) The influence of crude glycerol and castor oil-based polyol on the structure and performance of rigid polyurethane-polyisocyanurate foams. Ind Crops Prod 95:113–125

    Article  CAS  Google Scholar 

  13. Carriço CS, Fraga T, Pasa VMD (2016) Production and characterization of polyurethane foams from a simple mixture of castor oil, crude glycerol and untreated lignin as bio-based polyols. Eur Polym J 85:53–61

    Article  CAS  Google Scholar 

  14. Petrovic ZS, Cvetkovic I, Hong D, Wan X, Zhang W, Abraham T, Malsam J (2008) Polyester polyols and polyurethanes from ricinoleic acid. J Appl Polym Sci 108:1185–1190

    Article  CAS  Google Scholar 

  15. Zhang L, Zhang M, Hu L, Zhou Y (2014) Synthesis of rigid polyurethane foams with castor oil-based flame retardant polyols. Ind Crops Prod 52:380–388

    Article  CAS  Google Scholar 

  16. Hejna A, Kosmela P, Formela K, Formela K, Piszczyk Ł (2016) Potential applications of crude glycerol in polymer technology-current state and perspectives. Renew Sustain Energy Rev 66:449–475

    Article  CAS  Google Scholar 

  17. Gama NV, Silva R, Costa M, Barros-Timmons A, Ferreira A (2016) Statistical evaluation of the effect of formulation on the properties of crude glycerol polyurethane foams. Polym Test 56:200–206

    Article  CAS  Google Scholar 

  18. Mamiński M, Parzuchowski PG, Trojanowska A, Dziewulski S (2011) Fast-curing polyurethane adhesives derived from environmentally friendly hyperbranched polyglycerols: the effect of macromonomer structure. Biomass Bioenerg 35:4461–4468

    Article  CAS  Google Scholar 

  19. Hu S, Luo X, Wan C, Li Y (2012) Characterization of crude glycerol from biodiesel plants. J Agric Food Chem 60:5915–5921

    Article  CAS  PubMed  Google Scholar 

  20. Li C, Luo X, Li T, Tong X, Li Y (2014) Polyurethane foams based on crude glycerol-derived biopolyols: one-pot preparation of biopolyols with branched fatty acid ester chains and its effects on foam formation and properties. Polymer 55:6529–6538

    Article  CAS  Google Scholar 

  21. Zhong N, Li L, Xu X, Cheong LZ, Xu Z, Li B (2013) High yield of monoacylglycerols production through low-temperature chemical and enzymatic glycerolysis. Eur J Lipid Sci Technol 115:684–690

    Article  CAS  Google Scholar 

  22. Felizardo P, Machado J, Vergueiro D, Correia MJN, Gomes JP, Bordado JM (2011) Study on the glycerolysis reaction of high free fatty acid oils for use as biodiesel feedstock. Fuel Process Technol 92:1225–1229

    Article  CAS  Google Scholar 

  23. Sonntag NOV (1982) Glycerolysis of fats and methyl esters: status, review and critique. J Am Oil Chem Soc 59:795–802

    Article  Google Scholar 

  24. Noureddini H, Medikonduru V (1997) Glycerolysis of fats and methyl esters. J Am Oil Chem Soc 74:419–425

    Article  CAS  Google Scholar 

  25. Hu S, Luo X, Li Y (2015) Production of polyols and waterborne polyurethane dispersions from biodiesel-derived crude glycerol. J Appl Polym Sci 132:1–8

    Google Scholar 

  26. Echeverri DA, Rios LA, Rivas BL (2015) Synthesis and copolymerization of thermosetting resins obtained from vegetable oils and biodiesel-derived crude glycerol. Eur Polym J 67:423–438

    Article  CAS  Google Scholar 

  27. ASTM D 6584 (2014) Test method for determination of free and total glycerin in B-100 biodiesel methyl esters by gas chromatography1. West Conshohocken, PA

    Google Scholar 

  28. Associação Brasileira De Normas Técnicas (2014) NBR 11115: Insumos—Substâncias graxas: Determinação do índice de acidez

  29. ASTM D 4274 (2016) Standard test methods for testing polyurethane raw materials: determination of hydroxyl numbers of polyols. West Conshohocken, PA

    Google Scholar 

  30. ASTM D 1622/D 1622M-14 (2012) Standard test method for apparent density of rigid cellular plastics1. West Conshohocken, PA

    Google Scholar 

  31. ASTM D 2765-01 (2001) Standard test methods for determination of gel content and swell ratio of of crosslinked ethylene plastics1. West Conshohocken, PA

    Google Scholar 

  32. Monte Blanco SF, Santos JS, Feltes MM, Dors G, Licodiedoff S, Lerin LA, Olivera D, Ninow JL, Furigo A Jr (2015) Optimization of diacylglycerol production by glycerolysis of fish oil catalyzed by Lipozyme TL IM with Tween 65. Bioprocess Biosyst Eng 38:2379–2388

    Article  CAS  PubMed  Google Scholar 

  33. Ionescu M, Radojčić D, Wan X, Shrestha ML, Petrović ZS, Upshaw TA (2016) Highly functional polyols from castor oil for rigid polyurethanes. Eur Polym J 84:736–749

    Article  CAS  Google Scholar 

  34. Stuart BH (2004) Organic molecules. Wiley, Sydney

    Book  Google Scholar 

  35. Sánchez-Ferrer A, Rogez D, Martinoty P (2010) Synthesis and characterization of new polyurea elastomers by sol/gel chemistry. Macromol Chem Phys 211:1712–1721

    Article  CAS  Google Scholar 

  36. Stirna U, Fridrihsone A, Lazdiņa B, Misāne M, Vilsone D (2013) Biobased polyurethanes from rapeseed oil polyols: structure, mechanical and thermal properties. J Polym Environ 21:952–962

    Article  CAS  Google Scholar 

  37. Li S, Bouzidi L, Narine SS (2017) Polyols from self-metathesis-generated oligomers of soybean oil and their polyurethane foams. Eur Polym J 93:232–245

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors would like to thank: Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq) and Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES) for financial support (Grant No. 552251/2011-9); Laboratório Central de Microscopia Eletrônica at the Federal University of Santa Catarina (LCME-UFSC) for SEM images.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pedro Henrique Hermes de Araújo.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bresolin, D., Valério, A., de Oliveira, D. et al. Polyurethane Foams Based on Biopolyols from Castor Oil and Glycerol. J Polym Environ 26, 2467–2475 (2018). https://doi.org/10.1007/s10924-017-1138-7

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10924-017-1138-7

Keywords

Navigation