Skip to main content

Advertisement

Log in

LC–MS/MS-Based Metabolome Analysis of Biochemical Pathways Altered by Food Limitation in Larvae of Ivory Shell, Babylonia areolata

  • Original Article
  • Published:
Marine Biotechnology Aims and scope Submit manuscript

Abstract

Ivory shell, Babylonia areolata, is one of the commercially important mariculture species in China and South East Asia. Survival varies in the artificial hatching and larval rearing of B. areolata. Food deprivation may be involved in rearing mortality, and so, a better understanding of how larvae respond and adjust to starvation is needed. In this study, the metabolite profiles of newly hatched larvae with yolk (I), larvae with yolk exhaustion (II), larvae suffering 24 h starvation after yolk exhaustion (III), and larvae fed with exogenous nutrients after yolk exhaustion (IV) were analyzed by LC–MS/MS. Principal component and cluster analyses revealed differential abundance of metabolite profiles across groups. When compared to metabolite levels of the I group, significantly up-regulated metabolites included polyunsaturated fatty acids, phospholipids, nucleotide, amino acids, and their derivatives were found in the II group, indicating that organisms relied predominantly on glycerophospolipid metabolism and protein-based catabolism for energy production during this stage. During starvation after yolk exhaustion, the levels of all energy related metabolites were significantly reduced, but an increase in products of purine and pyrimidine metabolism indicated an insufficient energy supply and an increase in cellular disintegration. Larvae fed exogenous nutrients can have significantly improved metabolism compared to starved larvae. These findings suggest that metabolomics, using LC–MS/MS, can be used to assess the physiological status and food-affected metabolic changes affecting B. areolata larvae.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Alfaro AC, Young T (2016) Showcasing metabolomic applications in aquaculture: a review. Rev Aquac 0:1–18

    Google Scholar 

  • Baniasadi H, Vlahakis C, Hazebroek J, Zhong C, Asiago V (2014) Effect of environment and genotype on commercial maize hybrids using LC/MS-based metabolomics. J Agric Food Chem 62:1412–1422

    Article  PubMed  CAS  Google Scholar 

  • Benton HP, Ivanisevic J, Mahieu NG, Kurczy ME, Johnson CH, Franco L, Rinehart D, Valentine E, Gowda H, Ubhi BK, Tautenhahn R, Gieschen A, Field MW, Patti GJ, Siuzdak G (2015) Autonomous metabolomics for rapid metabolite identification in global profiling. Anal Chem 82:884–891

    Article  CAS  Google Scholar 

  • Brunk UT, Svensson I (1999) Oxidative stress, growth factor starvation and Fas activation may all cause apoptosis through lysosomal leak. Redox Rep 4:3–11

    Article  PubMed  CAS  Google Scholar 

  • Bulow FJ (1970) RNA–DNA ratios as indicators of recent growth rates of a fish. J Fish Res Board Can 27:2343–2349

    Article  CAS  Google Scholar 

  • Calado R, Dionísio G, Dinis MT (2007) Starvation resistance of early zoeal stages of marine ornamental shrimps Lysmata spp. (Decapoda: Hippolytidae) from different habitats. J Exp Mar Biol Ecol 351:226–233

    Article  Google Scholar 

  • Cetta CM, Capuzzo JM (1982) Physiological and biochemical aspects of embryonic and larval development of the winter flounder Pseudopleuronectes americanus. Mar Biol 71:327–337

    Article  Google Scholar 

  • Chaitanawisuti N, Kritsanapuntu A, Natsukari Y, Kathinmai S (2001) Effects of feeding rates on the growth, survival and feed utilization of hatchery-reared juvenile spotted babylon Babylonia areolata Link 1807 in a flowthrough seawater system. Aquac Res 32:689–692

    Article  Google Scholar 

  • Chaitanawisuti N, Kritsanapuntu S, Natsukari Y (2002) Economic analysis of a pilot commercial production for spotted babylon, Babylonia areolata (Link 1807), of marketable sizes using a flow-through culture system in Thailand. Aquac Res 33:1265–1272

    Article  Google Scholar 

  • Chen Y, Ke CH, Zhou SQ, Li FX (2004) Embryonic and larval development of Babylonia fonnosae habei (Altena and Gittenberger, 1981) (Gastropoda: Buccinidae) on China’s coast. Acta Oceanol Sin 23:521–531

    Google Scholar 

  • Chen L, Zhou L, Chan ECY, Neo J, Beuerman RW (2011) Characterization of the human tear metabolome by LC–MS/MS. J Proteome Res 10:4876–4882

    Article  PubMed  CAS  Google Scholar 

  • Chen Y, Ke CH, Zhang SY, Dai XJ (2017) Feeding rate responses of Babylonia formosae habei (Prosobranchia: Buccinidae) larvae on cultured algae. Aquac Res 48:1538–1549

    Article  Google Scholar 

  • Compton MM (1992) A biochemical hallmark of apoptosis: internucleosomal degradation of the genome. Cancer Metastasis Rev 11:105–119

    Article  PubMed  CAS  Google Scholar 

  • Crim RN, Sunday JM, Harley CDG (2011) Elevated seawater CO2 concentrations impair larval development and reduce larval survival in endangered northern abalone (Haliotis kamtschatkana). J Exp Mar Biol Ecol 400:272–277

    Article  CAS  Google Scholar 

  • Cunha I, Conceição LEC, Planas M (2007) Energy allocation and metabolic scope in early turbot, Scophthalmus maximus, larvae. Mar Biol 151:1397–1405

    Article  Google Scholar 

  • Dervishi E, Zhang GS, Dunn SM, Mandal R, Wishart DS, Ametaj BN (2017) GC–MS metabolomics identifies metabolite alterations that precede subclinical mastitis in the blood of transition dairy cows. J Proteome Res 16:433–446

    Article  PubMed  CAS  Google Scholar 

  • Dou SZ, Masuda R, Tanaka M, Tsukamoto K (2005) Effects of temperature and delayed initial feeding on the survival and growth of Japanese flounder larvae. J Fish Biol 66:362–377

    Article  Google Scholar 

  • Ellis RP, Spicer JI, Byrne JJ, Sommer U, Viant MR, White DA, Widdicombe S (2014) 1H NMR metabolomics reveals contrasting response by male and female mussels exposed to reduced seawater pH, increased temperature, and a pathogen. Environ Sci Technol 48:7044–7052

    Article  PubMed  CAS  Google Scholar 

  • Feng JH, Li JQ, Wu HF, Chen Z (2013) Metabolic responses of HeLa cells to silica nanoparticles by NMR-based metabolomic analyses. Metabolomics 9:874–886

    Article  CAS  Google Scholar 

  • Finn RN, Fyhn HJ, Evjen MS (1995) Physiological energetics of developing embryos and yolk-sac larvae of Atlantic cod (Gadus morhua). I. Respiration and nitrogen metabolism. Mar Biol 124:355–369

    Article  CAS  Google Scholar 

  • Fu JQ, Lü WG, Li WD, Shen MH, Luo X, Ke CH, You WW (2017) Comparative assessment of the genetic variation in selectively bred generations from two geographic populations of ivory shell (Babylonia areolata). Aquac Res 48:4205–4218

    Article  Google Scholar 

  • Giménez L (2002) Effects of prehatching salinity and initial larval biomass on survival and duration of development in the zoea 1 of the estuarine crab, Chasmagnathus granulata, under nutritional stress. J Exp Mar Biol Ecol 270:93–110

    Article  Google Scholar 

  • González-Ortegón E, Giménez L, Blasco J, Le Vay L (2015) Effects of food limitation and pharmaceutical compounds on the larval development and morphology of Palaemon serratus. Sci Total Environ 503:171–178

    Article  PubMed  CAS  Google Scholar 

  • Guerao G, Simeó CG, Anger K, Urzúa Á, Rotllant G (2012) Nutritional vulnerability of early zoea larvae of the crab Maja brachydactyla (Brachyura, Majidae). Aquat Biol 16:253–264

    Article  Google Scholar 

  • Heming TA, Buddington RK (1988) 6 yolk absorption in embryonic and larval fishes. Fish Physiol 11:407–446

    Article  Google Scholar 

  • Holland DL, Spencer BE (1973) Biochemical changes in fed and starved oysters, Ostrea edulis L. during larval development, metamorphosis and early spat growth. J Mar Biol Assoc UK 53:287–298

    Article  CAS  Google Scholar 

  • Houde ED (1974) Effects of temperature and delayed feeding on growth and survival of larvae of three species of subtropical marine fishes. Mar Biol 26:271–285

    Article  Google Scholar 

  • Ivanisevic J, Zhu ZJ, Plate L, Tautenhahn R, Chen S, O’Brien PJ, Johnson CH, Marletta MA, Patti GJ, Siuzdak G (2013) Toward ‘omic scale metabolite profiling: a dual separation–mass spectrometry approach for coverage of lipid and central carbon metabolism. Anal Chem 85:6876–6884

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Jansson A, Norkko J, Norkko A (2013) Effects of reduced pH on Macoma balthica larvae from a system with naturally fluctuating pH-dynamics. PLoS One 8:e68198

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Kelly AD, Breitkopf SB, Yuan M, Goldsmith J, Spentzos D, Asara JM (2011) Metabolomic profiling from formalin-fixed, paraffin-embedded tumor tissue using targeted LC/MS/MS: application in sarcoma. PLoS One 6:e25357

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Krishnan P, Kruger NJ, Ratcliffe RG (2005) Metabolite fingerprinting and profiling in plants using NMR. J Exp Bot 56:255–265

    Article  PubMed  CAS  Google Scholar 

  • Kritsanapuntu S, Chaitanawisuti N, Natsukari Y (2007) Effects of different diets and seawater systems on egg production and quality of the broodstock Babylonia areolata L. under hatchery conditions. Aquac Res 38:1311–1316

    Article  CAS  Google Scholar 

  • Kumlu M, Eroldogan OT, Aktas M (2000) Effects of temperature and salinity on larval growth, survival and development of Penaeus semisulcatus. Aquaculture 188:167–173

    Article  Google Scholar 

  • Lee SH, Woo HM, Jung BH, Lee J, Kwon OS, Pyo HS, Choi MH, Chung BC (2007) Metabolomic approach to evaluate the toxicological effects of nonylphenol with rat urine. Anal Chem 79:6102–6110

    Article  PubMed  CAS  Google Scholar 

  • Liu WG, Li Q, Gao FX, Kong LF (2010) Effect of starvation on biochemical composition and gametogenesis in the Pacific oyster Crassostrea gigas. Fish Sci 76:737–745

    Article  CAS  Google Scholar 

  • Liu R, Liang Y, Wu X, Xu D, Liu Y, Liu L (2011) First report on the detection of pectenotoxin groups in Chinese shellfish by LC–MS/MS. Toxicon 57:1000–1007

    Article  PubMed  CAS  Google Scholar 

  • Lu CR, Shi Y, Wang Z, Song ZH, Zhu MC, Cai Q, Chen T (2008) Serum starvation induces H2AX phosphorylation to regulate apoptosis via p38 MAPK pathway. FEBS Lett 582:2703–2708

    Article  PubMed  CAS  Google Scholar 

  • Lü WG, Ke CH, Fu JQ, You WW, Luo X, Huang MQ, Yu JJ, Li WD, Shen MH (2016) Evaluation of crosses between two geographic populations of native Chinese and introduced Thai spotted ivory shell, Babylonia areolata, in southern China. J World Aquacult Soc 47:544–554

    Article  Google Scholar 

  • Maity S, Jannasch A, Adamec J, Gribskov M, Nalepa T, Höök TO, Sepúlveda MS (2012) Metabolite profiles in starved Diporeia spp. using liquid chromatography–mass spectrometry (LC–MS) based metabolomics. J Crustac Biol 32:239–248

    Article  Google Scholar 

  • Matias D, Joaquim S, Ramos M, Sobral P, Leitão A (2010) Biochemical compounds’ dynamics during larval development of the carpet-shell clam Ruditapes decussatus (Linnaeus, 1758): effects of mono-specific diets and starvation. Helgol Mar Res 65:369–379

    Article  Google Scholar 

  • McEdward LR, Qian PY (2001) Effects of the duration and timing of starvation during larval life on the metamorphosis and initial juvenile size of the polychaete Hydroides elegans (Haswell). J Exp Mar Biol Ecol 261:185–197

    Article  PubMed  Google Scholar 

  • Meyer B, Oettl B (2005) Effects of short-term starvation on composition and metabolism of larval Antarctic krill Euphausia superba. Mar Ecol Prog Ser 292:263–270

    Article  CAS  Google Scholar 

  • Millar RH, Scott JM (1967) The larva of the oyster Ostrea edulis during starvation. J Mar Biol Assoc UK 47:475–484

    Article  Google Scholar 

  • Moran AL, Manahan (2004) Physiological recovery from prolonged ‘starvation’ in larvae of the Pacific oyster Crassostrea gigas. J Exp Mar Biol Ecol 306:17–36

    Article  CAS  Google Scholar 

  • Ohkubo N, Matsubara T (2002) Sequential utilization of free amino acids, yolk proteins and lipids in developing eggs and yolk-sac larvae of barfin flounder Verasper moseri. Mar Biol 140:187–196

    Article  CAS  Google Scholar 

  • Ohkubo N, Sawaguchi S, Hamatsu T, Matsubara T (2006) Utilization of free amino acids, yolk proteins and lipids in developing eggs and yolk-sac larvae of walleye pollock Theragra chalcogramma. Fish Sci 72:620–630

    Article  CAS  Google Scholar 

  • Ohkubo N, Sawaguchi S, Nomura K, Tanaka H, Matsubara T (2008) Utilization of free amino acids, yolk protein and lipids in developing eggs and yolk-sac larvae of Japanese eel Anguilla japonica. Aquaculture 282:130–137

    Article  CAS  Google Scholar 

  • Olson RR, Olson MH (1989) Food limitation of planktotrophic marine invertebrate larvae: does it control recruitment success? Annu Rev Ecol Syst 20:225–247

    Article  Google Scholar 

  • Pechenik JA, Cerulli TR (1991) Influence of delayed metamorphosis on survival, growth, and reproduction of the marine polychaete Capitella sp. I. J Exp Mar Biol Ecol 151:17–27

    Article  Google Scholar 

  • Roberts RD, Lapworth C, Barker RJ (2001) Effect of starvation on the growth and survival of post-larval abalone (Haliotis iris). Aquaculture 200:323–338

    Article  Google Scholar 

  • Rønnestad I, Groot EP, Fyhn HJ (1993) Compartmental distribution of free amino acids and protein in developing yolk-sac larvae of Atlantic halibut (Hippoglossus hippoglossus). Mar Biol 116:349–354

    Article  Google Scholar 

  • Rønnestad I, Thorsen A, Finn RN (1999) Fish larval nutrition: a review of recent advances in the roles of amino acids. Aquaculture 177:201–216

    Article  Google Scholar 

  • Sánchez-Lazo C, Martínez-Pita I (2012) Biochemical and energy dynamics during larval development of the mussel Mytilus galloprovincialis (Lamarck, 1819). Aquaculture 358–359:71–78

  • Sheedy JR, Lachambre S, Gardner DK, Day RW (2016) 1H-NMR metabolite profiling of abalone digestive gland in response to short-term starvation. Aquac Int 24:503–521

    Article  Google Scholar 

  • Staton JL, Sulkin SD (1991) Nutritional requirements and starvation resistance in larvae of the brachyuran crabs Sesarma cinereum (Bosc) and S. reticulatum (Say). J Exp Mar Biol Ecol 152:271–284

    Article  Google Scholar 

  • Sun XJ, Li Q (2014) Effects of delayed first feeding on larval growth, survival and development of the sea cucumber Apostichopus japonicus (Holothuroidea). Aquac Res 45:278–288

    Article  Google Scholar 

  • Suzuki M, Nishiumi S, Kobayashi T, Azuma T, Yoshida M (2016) LC–MS/MS-based metabolome analysis detected changes in the metabolic profiles of small and large intestinal adenomatous polyps in ApcMin/+ mice. Metabolomics 12:68

    Article  CAS  Google Scholar 

  • Takamatsu M, Fujita T, Hotta H (2001) Suppression of serum starvation-induced apoptosis by hepatitis C virus core protein. Kobe J Med Sci 47:97–112

    PubMed  CAS  Google Scholar 

  • Viant MR, Rosenblum ES, Tjeerdema RS (2003) NMR-based metabolomics: a powerful approach for characterizing the effects of environmental stressors on organism health. Environ Sci Technol 37:4982–4989

    Article  PubMed  CAS  Google Scholar 

  • Vidal ÉAG, DiMarco P, Lee P (2006) Effects of starvation and recovery on the survival, growth and RNA/DNA ratio in loliginid squid paralarvae. Aquaculture 260:94–105

    Article  CAS  Google Scholar 

  • Wagner M, Durbin E, Buckley L (1998) RNA:DNA ratios as indicators of nutritional condition in the copepod Calanus finmarchicus. Mar Ecol Prog Ser 162:173–181

    Article  CAS  Google Scholar 

  • Want EJ, Cravatt BF, Siuzdak G (2005) The expanding role of mass spectrometry in metabolite profiling and characterization. Chembiochem 6:1941–1951

    Article  PubMed  CAS  Google Scholar 

  • Wu HF, Zhang XY, Wang Q, Li LZ, Ji CL, Liu XL, Zhao JM, Yin XL (2013) A metabolomic investigation on arsenic-induced toxicological effects in the clam Ruditapes philippinarum under different salinities. Ecotoxicol Environ Saf 90:1–6

    Article  PubMed  CAS  Google Scholar 

  • Wu XG, Zeng CS, Southgate PC (2016) Effects of starvation on survival, biomass, and lipid composition of newly hatched larvae of the blue swimmer crab, Portunus pelagicus (Linnaeus, 1758). Aquac Int 25:447–461

    Article  CAS  Google Scholar 

  • Xia JG, Broadhurst DI, Wilson M, Wishart DS (2013) Translational biomarker discovery in clinical metabolomics: an introductory tutorial[J]. Metabolomics 9:280–299

    Article  PubMed  CAS  Google Scholar 

  • Xiao JF, Varghese RS, Zhou B, Nezami Ranjbar MR, Zhao Y, Tsai TH, Poto CD, Wang JL, Goerlitz D, Luo Y, Cheema AK, Sarhan N, Soliman H, Tadesse MG, Ziada DH, Ressom HW (2012) LC–MS based serum metabolomics for identification of hepatocellular carcinoma biomarkers in Egyptian cohort. J Proteome Res 11:5914–5923

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Yan XW, Zhang YH, Huo ZM, Yang F, Zhang GF (2009) Effects of starvation on larval growth, survival, and metamorphosis of Manila clam Ruditapes philippinarum. Acta Ecol Sin 29:327–334

    Article  Google Scholar 

  • Yandi I, Altinok I (2014) Defining the starvation potential and the influence on RNA/DNA ratios in horse mackerel (Trachurus mediterraneus) larvae. Helgol Mar Res 69:25–35

    Article  Google Scholar 

  • Yokota T, Nakagawa T, Murakami N, Chimura M, Tanaka H, Yamashita Y, Funamoto T (2016) Effects of starvation at the first feeding stage on the survival and growth of walleye pollock Gadus chalcogrammus larvae. Fish Sci 82:73–83

    Article  CAS  Google Scholar 

  • Young T, Alfaro AC, Villas-Bôas S (2015) Identification of candidate biomarkers for quality assessment of hatchery-reared mussel larvae via GC/MS-based metabolomics. New Zeal J Mar Fresh 49:87–95

    Article  CAS  Google Scholar 

  • Yúfera M, Darias MJ (2007) The onset of exogenous feeding in marine fish larvae. Aquaculture 268:53–63

    Article  Google Scholar 

  • Zhang CS, Li ZG, Li FH, Xiang JH (2015) Effects of starvation on survival, growth and development of Exopalaemon carinicauda larvae. Aquac Res 46:2289–2299

    Article  Google Scholar 

  • Zheng HP, Ke CH, Zhou SQ, Li FX (2005) Effects of starvation on larval growth, survival and metamorphosis of ivory shell Babylonia formosae habei Altena et al., 1981 (Neogastropoda: Buccinidae). Aquaculture 243:357–366

    Article  Google Scholar 

  • Zheng HP, Ke CH, Sun ZW, Zhou SQ, Li FX (2010) Effects of stocking density and algal concentration on the survival, growth and metamorphosis of Bobu ivory shell, Babylonia formosae habei (Neogastropoda:Buccinidae) larvae. Aquac Res 42:1–8

    Article  Google Scholar 

Download references

Acknowledgements

The authors thank the Hainan Academy of Ocean and Fisheries Sciences for its assistance in operations over the larval periods. This research was supported by the Earmarked Fund for Modern Agro-industry Technology Research System (No. CARS-48) and the Hainan Provincial Ocean Basic Budget Project in 2016.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Weiwei You.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fu, J., Shen, M., Shen, Y. et al. LC–MS/MS-Based Metabolome Analysis of Biochemical Pathways Altered by Food Limitation in Larvae of Ivory Shell, Babylonia areolata. Mar Biotechnol 20, 451–466 (2018). https://doi.org/10.1007/s10126-018-9808-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10126-018-9808-6

Keywords

Navigation