Skip to main content
Log in

UPLC-MS metabolomics provides insights into the differences between black- and white-shelled Pacific oysters Crassostrea gigas

  • Aquaculture and Fisheries
  • Published:
Journal of Oceanology and Limnology Aims and scope Submit manuscript

Abstract

A variety of shell colors are one of the most fundamental characteristics of molluscs, which have importantly ecological and economic significance. The Pacific oyster Crassostrea gigas is distributed in many sea areas around the world and also an aquacultured mollusc with high nutritional value. In this study, the whole soft body and the mantle tissue of black-shelled Pacific oyster (BSO) and white-shelled Pacific oyster (WSO) with starkly different melanin contents were compared, and the differences in physiology and metabolism between BSO and WSO were analyzed. The results of physiological indicators suggested BSO show more melanin, more dry matter, more crude lipid content, and stronger ability to scavenge free radicals than WSO. The altered metabolites of glycerophospholipids, fatty acyls, and steroids revealed different regulatory mechanisms of lipids. The correlation analysis of metabolomics and previously published RNAseq data suggested that BSO and WSO mainly differed in the basal metabolic processes, such as lipid, amino acid and purine metabolisms. This study provides insights into the changes in the physiological indictors and the metabolites of oysters with varying melanin content.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Data Availability Statement

The MS raw data that support the findings of this study are available in figshare with the identifier. Dataset, https://doi.org/10.6084/m9.figshare.12261065.v1.

References

  • Asha K K, Anandan R, Mathew S, Lakshmanan P T. 2014. Biochemical profile of oyster Crassostrea madrasensis and its nutritional attributes. The Egyptian Journal of Aquatic Research, 40(1): 35–41.

    Google Scholar 

  • Berik N, Çankırılıgil E C, Gül G. 2017. Mineral content of smooth scallop (Flexopecten glaber) caught Canakkale, Turkey and evaluation in terms of food safety. Journal of Trace Elements in Medicine and Biology, 42: 97–102.

    Google Scholar 

  • Chan C F, Huang C C, Lee M Y, Lin Y S. 2014. Fermented broth in tyrosinase- and melanogenesis inhibition. Molecules, 19(9): 13 122–13 135.

    Google Scholar 

  • Chen Q S, Wang X C, Cong P X, Liu Y J, Wang Y M, Xu J, Xue C H. 2017. Mechanism of phospholipid hydrolysis for oyster Crassostrea plicatula phospholipids during storage using shotgun lipidomics. Lipids, 52(12): 1 045–1 058.

    Google Scholar 

  • Cullis P T, De Kruijff B. 1979. Lipid polymorphism and the functional roles of lipids in biological membranes. Biochimica et Biophysica Acta (BBA)-Reviews on Biomembranes, 559(4): 399–420.

    Google Scholar 

  • Debecker S, Sommaruga R, Maes T, Stoks R. 2015. Larval UV exposure impairs adult immune function through a tradeoff with larval investment in cuticular melanin. Functional Ecology, 29(10): 1 292–1 299.

    Google Scholar 

  • Dietvorst J, Londesborough J, Steensma H Y. 2005. Maltotriose utilization in lager yeast strains: MTT1 encodes a maltotriose transporter. Yeast, 22(10): 775–788.

    Google Scholar 

  • Ding J, Zhao L, Chang Y Q, Zhao W M, Du Z L, Hao Z L. 2015. Transcriptome sequencing and characterization of Japanese scallop Patinopecten yessoensis from different shell color lines. PLoS One, 10(2): e0116406.

    Google Scholar 

  • Dong X P, Zhu B W, Zhao H X, Zhou D Y, Wu H T, Yang J F, Li D M, Murata Y. 2010. Preparation and in vitro antioxidant activity of enzymatic hydrolysates from oyster (Crassostrea talienwhannensis) meat. International Journal of Food Science & Technology, 45(5): 978–984.

    Google Scholar 

  • ElObeid A S, Kamal-Eldin A, Abdelhalim M A K, Haseeb A M. 2017. Pharmacological properties of melanin and its function in health. Basic & Clinical Pharmacology & Toxicology, 120(6): 515–522.

    Google Scholar 

  • Eom D S, Inoue S, Patterson L B, Gordon T N, Slingwine R, Kondo S, Watanabe M, Parichy D M. 2012. Melanophore migration and survival during zebrafish adult pigment stripe development require the immunoglobulin superfamily adhesion molecule Igsf11. PLoS Genetics, 8(8): e1002899.

    Google Scholar 

  • Feng D D, Li Q, Yu H, Zhao X L, Kong L F. 2015. Comparative transcriptome analysis of the Pacific Oyster Crassostrea gigas characterized by shell colors: identification of genetic bases potentially involved in pigmentation. PLoS One, 10(12): e0145257.

    Google Scholar 

  • Gebhardt S E, Thomas R G. 2002. Nutritive Value of Foods. United States Department of Agriculture. Agricultural Research Service, Home and Garden Bulletin, Beltsville, Maryland.

    Google Scholar 

  • Green T J, Dixon T J, Devic E, Adlard R D, Barnes A C. 2009. Differential expression of genes encoding anti-oxidant enzymes in Sydney rock oysters, Saccostrea glomerata (Gould) selected for disease resistance. Fish & Shellfish Immunology, 26(5): 799–810.

    Google Scholar 

  • Hansson L A. 2004. Plasticity in pigmentation induced by conflicting threats from predation and UV radiation. Ecology, 85(4): 1 005–1 016.

    Google Scholar 

  • Hao R J, Du X D, Yang C Y, Deng Y W, Zheng Z, Wang Q H. 2019. Integrated application of transcriptomics and metabolomics provides insights into unsynchronized growth in pearl oyster Pinctada fucata martensii. Science of the Total Environment, 666: 46–56.

    Google Scholar 

  • Hu S J, Zhao G H, Zheng Y X, Qu M, Jin Q, Tong C Q, Li W. 2017. Effect of drying procedures on the physicochemical properties and antioxidant activities of polysaccharides from Crassostrea gigas. PLoS One, 12(11): e0188536.

    Google Scholar 

  • Jongejan A, Leurs R. 2005. Delineation of receptor-ligand interactions at the human histamine H1 receptor by a combined approach of site-directed mutagenesis and computational techniques - or - how to bind the H1 receptor. Archiv Der Pharmazie, 338(5–6): 248–259.

    Google Scholar 

  • Kanehisa M, Araki M, Goto S, Hattori M, Hirakawa M, Itoh M, Katayama T, Kawashima S, Okuda S, Tokimatsu T, Yamanishi Y. 2008. KEGG for linking genomes to life and the environment. Nucleic Acids Research, 36(S1): D480–D484.

    Google Scholar 

  • Koizumi S, Yamamoto S, Hayasaka T, Konishi Y, Yamaguchi-Okada M, Goto-Inoue N, Sugiura Y, Setou M, Namba H. 2010. Imaging mass spectrometry revealed the production of lyso-phosphatidylcholine in the injured ischemic Rat Brain. Neuroscience, 168(1): 219–225.

    Google Scholar 

  • Lin J Y, Fisher D E. 2007. Melanocyte biology and skin pigmentation. Nature, 445(7130): 843–850.

    Google Scholar 

  • Liu X, Wu F C, Zhao H E, Zhang G F, Guo X M. 2009. A novel shell color variant of the pacific abalone Haliotis discus hannai Ino subject to genetic control and dietary influence. Journal of Shellfish Research, 28(2): 419–424.

    Google Scholar 

  • McCord J. 1985. Oxygen-derived free radicals in postischemic tissue injury. New England Journal of Medicine, 312(3): 159–163.

    Google Scholar 

  • Mitton J B. 1977. Shell color and pattern variation in Mytilus edulis and its adaptive significance. Chesapeake Science, 18: 387–390.

    Google Scholar 

  • Mochel F. 2018. Lipids and synaptic functions. Journal of Inherited Metabolic Disease, 41(6): 1 117–1 122.

    Google Scholar 

  • Moment G B. 1962. Reflexive selection: a possible answer to an old puzzle. Science, 136(3512): 262–263.

    Google Scholar 

  • Moret Y, Moreau J. 2012. The immune role of the arthropod exoskeleton. Invertebrate Survival Journal, 9: 200–206.

    Google Scholar 

  • Morris P. 2012. Animal eyes (Oxford Animal Biology Series) by Michael F. Land & Dan-Eric Nilsson. Zoological Journal of the Linnean Society, 166(4): 912.

    Google Scholar 

  • Newkirk G F. 1980. Genetics of shell color in Mytilus edulis L. and the association of growth rate with shell color. Journal of Experimental Marine Biology and Ecology, 47(1): 89–94.

    Google Scholar 

  • Pierce S K, Rowland-Faux L M, Crombie B N. 1995. The mechanism of glycine betaine regulation in response to hyperosmotic stress in oyster mitochondria: a comparative study of Atlantic and Chesapeake Bay oysters. Journal of Experimental Zoology, 271(3): 161–170.

    Google Scholar 

  • Sedej M, Platzer W, Vukoja A, Schuligoi R, Peskar B A, Heinemann Á, Waldhoer M. 2008. Effects of PGH2 and PGD2 on CRTH2 and DP receptors in primary cells and co-expressed in HEK293 cells. BMC Pharmacology, 8(S1): A10.

    Google Scholar 

  • Sharma S, Wagh S, Govindarajan R. 2002. Melanosomal proteins—role in melanin polymerization. Pigment Cell Research, 15(2): 127–133.

    Google Scholar 

  • Shen Q, Wang Y Y, Gong L K, Guo R, Dong W, Cheung H Y 2012. Shotgun lipidomics strategy for fast analysis of phospholipids in fisheries waste and its potential in species differentiation. Journal of Agricultural and Food Chemistry, 60(37): 9 384–9 393.

    Google Scholar 

  • Smith D A S. 1975. Polymorphism and selective predation in Donax faba Gmelin (Bivalvia: Tellinacea). Journal of Experimental Marine Biology and Ecology, 17(2): 205–219.

    Google Scholar 

  • Song J L, Li Q, Yu Y, Wan S, Han L C, Du S J. 2018. Mapping genetic loci for quantitative traits of golden shell color, mineral element contents, and growth-related traits in Pacific Oyster (Crassostrea gigas). Marine Biotechnology, 20(5): 666–675.

    Google Scholar 

  • Speiser D I, Johnsen S. 2008. Comparative morphology of the concave mirror eyes of scallops (Pectinoidea). American Malacological Bulletin, 26(1–2): 27–33.

    Google Scholar 

  • Thayer C W. 1971. Fish-like crypsis in swimming monomyaria. Journal of Molluscan Studies, 39(5): 371–376.

    Google Scholar 

  • Van Den Bossche K, Naeyaert J M, Lambert J. 2006. The quest for the mechanism of melanin transfer. Traffic, 7(7): 769–778.

    Google Scholar 

  • Videira I F D S, Moura D F L, Magina S. 2013. Mechanisms regulating melanogenesis. Anais Brasileiros de Dermatologia, 88(1): 76–83.

    Google Scholar 

  • Wang X T, Xu W J, Wei L, Zhu C L, He C, Song H C, Cai Z Q, Yu W C, Jiang Q Y, Li L L, Wang K, Feng C G. 2019. Nanopore sequencing and de novo assembly of a black-shelled Pacific oyster (Crassostrea gigas) genome. Frontiers in Genetics, 10: 1 211.

    Google Scholar 

  • Wei L, Jiang Q Y, Cai Z Q, Yu W C, He C, Guo W, Wang X T. 2019. Immune-related molecular and physiological differences between black-shelled and white-shelled Pacific oysters Crassostrea gigas. Fish & Shellfish Immunology, 92: 64–71.

    Google Scholar 

  • Williams S T. 2017. Molluscan shell colour. Biological Reviews, 92(2): 1 039–1 058.

    Google Scholar 

  • Wolken J J. 1988. Photobehavior of marine invertebrates: extraocular photoreception. Comparative Biochemistry and Physiology Part C: Comparative Pharmacology, 91(1): 145–149.

    Google Scholar 

  • Wu C L, Jiang Q Y, Wei L, Cai Z Q, Chen J, Yu W C, He C, Wang J, Guo W, Wang X T. 2018. A rhodopsin-like gene may be associated with the light-sensitivity of adult pacific oyster Crassostrea gigas. Frontiers in physiology, 9: 221.

    Google Scholar 

  • Wu C L, Wang J, Yang Y J, Li Z, Guo T, Li Y C, Wang X T. 2015. Adult pacific oyster (Crassostrea gigas) may have light sensitivity. PLoS One, 10(10): e0140149.

    Google Scholar 

  • Xing D, Li Q, Kong L F, Yu H. 2018. Heritability estimate for mantle edge pigmentation and correlation with shell pigmentation in the white-shell strain of Pacific oyster, Crassostrea gigas. Aquaculture, 482: 73–77.

    Google Scholar 

  • Xu L, Li Q, Yu H, Kong L F. 2017. Estimates of heritability for growth and shell color traits and their genetic correlations in the black shell strain of Pacific Oyster Crassostrea gigas. Marine Biotechnology, 19(5): 421–429.

    Google Scholar 

  • Xu M, Huang J, Shi Y, Zhang H, He M X. 2019. Comparative transcriptomic and proteomic analysis of yellow shell and black shell pearl oysters, Pinctada fucata martensii. BMC Genomics, 20(1): 469.

    Google Scholar 

  • Yin P P, Jia A R, Heimann K, Zhang M S, Liu X, Zhang W, Liu C H. 2020. Hot water pretreatment-induced significant metabolite changes in the sea cucumber Apostichopus japonicus. Food Chemistry, 314: 126211.

    Google Scholar 

  • Yu W C, He C, Cai Z Q, Xu F, Wei L, Chen J, Jiang Q Y, Wei N, Li Z, Guo W, Wang X T. 2017. A preliminary study on the pattern, the physiological bases and the molecular mechanism of the adductor muscle scar pigmentation in Pacific oyster Crassostrea gigas. Frontiers in Physiology, 8: 699.

    Google Scholar 

  • Zhang G F, Fang X D, Guo X M, Li L, Luo R B, Xu F, Yang P C, Zhang L L, Wang X T, Qi H G, Xiong Z Q, Que H Y, Xie Y L, Holland P W H, Paps J, Zhu Y B, Wu F C, Chen Y X, Wang J F, Peng C F, Meng J, Yang L, Liu J, Wen B, Zhang N, Huang Z Y, Zhu Q H, Feng Y, Mount A, Hedgecock D, Xu Z, Liu Y J, Domazet-Lošo T, Du Y S, Sun X Q, Zhang S D, Liu B H, Cheng P Z, Jiang X T, Li J, Fan D D, Wang W, Fu W J, Wang T, Wang B, Zhang J B, Peng Z Y, Li Y X, Li N, Wang J P, Chen M S, He Y, Tan F J, Song X R, Zheng Q M, Huang R L, Yang H L, Du X D, Chen L, Yang M, Gaffney P M, Wang S, Luo L H, She Z C, Ming Y, Huang W, Zhang S, Huang B Y, Zhang Y, Qu T, Ni P X, Miao G Y, Wang J Y, Wang Q, Steinberg C E W, Wang H Y, Li N, Qian L M, Zhang G J, Li Y R, Yang H M, Liu X, Wang J, Yin Y, Wang J. 2012. The oyster genome reveals stress adaptation and complexity of shell formation. Nature, 490(7418): 49–54.

    Google Scholar 

  • Zhu W H, Yu H T, Wang Y, Chang Y, Wan J Y, Xu N, Wang J L, Liu W S. 2019. Integration of transcriptomics, proteomics and metabolomics data to reveal the biological mechanisms of abrin injury in human lung epithelial cells. Toxicology Letters, 312: 1–10.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Lei Wei or Xiaotong Wang.

Additional information

Supported by the Agricultural Variety Improvement Project of Shandong Province (No. 2019LZGC020), the National Natural Science Foundation of China (Nos. 41906088, 41876193, 31802328), the National Key R&D Program of China (No. 2018YFD0901400), the Special Funds for Taishan Scholars Project of Shandong Province, China (No. tsqn201812094), the Shandong Provincial Natural Science Foundation, China (No. ZR2019MC002), the Modern Agricultural Industry Technology System of Shandong Province, China (No. SDAIT-14-03), and the Plan of Excellent Youth Innovation Team of Colleges and universities in Shandong Province, China (No. 2019KJF004)

Supporting Information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, X., Jiang, Q., Song, H. et al. UPLC-MS metabolomics provides insights into the differences between black- and white-shelled Pacific oysters Crassostrea gigas. J. Ocean. Limnol. 39, 340–349 (2021). https://doi.org/10.1007/s00343-020-0117-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00343-020-0117-3

Keywords

Navigation