Skip to main content

Advertisement

Log in

Metabolic responses of HeLa cells to silica nanoparticles by NMR-based metabolomic analyses

  • Original Article
  • Published:
Metabolomics Aims and scope Submit manuscript

Abstract

Silica nanoparticles are increasingly used in the biomedical fields due to their excellent solubility, high stability and favorable biocompatibility. However, despite being considered of low genotoxicity, their bio-related adverse effects have attracted particular concern from both the scientific field and the public. In this study, human cervical adenocarcinoma cells (HeLa line) were exposed to 0.01 or 1.0 mg/mL of hydrophilic silica nanoparticles. The 1H NMR spectroscopy coupled with multivariate statistical analysis were used to characterize the metabolic variations of intracellular metabolites and the compositional changes of the corresponding culture media. At the early stage of silica nanoparticles-exposure, no obvious dose–effect of HeLa cell metabolome was observed, which implied that cellular stress-response regulated the metabolic variations of HeLa cell. Silica nanoparticles induced the increases of lipids including triglyceride, LDL, VLDL and lactate/alanine ratio and the decreases of alanine, ATP, choline, creatine, glycine, glycerol, isoleucine, leucine, phenylalanine, tyrosine, and valine, which involved in membrane modification, catabolism of carbohydrate and protein, and stress-response. Subsequently, a complicated synergistic effect of stress-response and toxicological-effect dominated the biochemical process and metabolic response, which was demonstrated in the reverse changes of some metabolites including acetate, ADP, ATP, choline, creatine, glutamine, glycine, lysine, methionine, phenylalanine and valine between 6 and 48 h post-treatment of silica nanoparticles. The toxicological-effects induced by high-dosage silica nanoparticles could be derived from the elevated levels of ATP and ADP, the utilization of glucose and amino acids and the production of metabolic end-products such as glutamate, glycine, lysine, methionine, phenylalanine, and valine. The results indicated that it is important and necessary to pursue further the physiological responses of silica nanoparticles in animal models and human before their practical use. NMR-based metabolomic analysis helps to understand the biological mechanisms of silica nanoparticles and their metabolic fate, and further, it offers an ideal platform for establishing the bio-safety of existing and new nanomaterials.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Akhtar, S. V., Singh, R. K., Jadegoud, Y., Dhole, T. N., Ayyagari, A., & Gowda, G. A. N. (2007). In vitro 1H NMR studies of RD human cell infection with Echovirus 11. NMR in Biomedicine, 20, 422–428.

    Article  PubMed  CAS  Google Scholar 

  • Bailey, N. J. C., Oven, M., Holmes, E., Nicholson, J. K., & Zenk, M. H. (2003). Metabolomic analysis of the consequences of cadimium exposure in silence cucubalus cell cultures via 1H NMR spectroscopy and chemometrics. Phytochemistry, 62, 851–858.

    Article  PubMed  CAS  Google Scholar 

  • Berg, J. M., Tymochzko, J. L., & Stryer, L. (2002). Biochemistry (5th ed.). New York: Freeman.

    Google Scholar 

  • Bundy, J. G., Iyer, N. G., Gentile, M. S., Hu, D. E., Kettunen, M., Maia, A. T., et al. (2006). Metabolic consequences of p300 gene deletion in human colon cancer cells. Cancer Research, 66, 7606–7614.

    Article  PubMed  CAS  Google Scholar 

  • Chen, Z., Meng, H., Xing, G., Yuan, H., Zhao, F., Gao, X., et al. (2008). Age-related differences in pulmonary and cardiovascular responses to SiO2 nanoparticles inhalation: Nanotoxicity has susceptible population. Environmental Science and Technology, 42, 8985–8992.

    Article  PubMed  CAS  Google Scholar 

  • Choi, M., Cho, W. S., Han, B. S., Cho, M., Kim, S. Y., Yi, J. Y., et al. (2008). Transient pulmonary fibrogenic effect induced by intratracheal instillation of ultrafine amorphous silica in A/J mice. Toxicology Letters, 182, 97–101.

    Article  PubMed  CAS  Google Scholar 

  • Feng, J., Zhao, J., Hao, F., Chen, C., Bhakoo, K., & Tang, H. (2011). NMR-based metabonomics analyses of the effects of ultrasmall superparamagnetic particles of iron oxide (USPIO) on macrophage metabolism. Journal of Nanoparticle Research, 13, 2049–2062.

    Article  CAS  Google Scholar 

  • Gao, A., Song, S., Wang, D., Peng, W., & Tian, L. (2009). Effect of silicon dioxide on expression of poly (ADP-ribose) polymerase mRNA and protein. Cell Biology International, 33, 749–754.

    Article  PubMed  CAS  Google Scholar 

  • Ghanaati, S. M., Thimm, B. W., Unger, R. E., Orth, C., Kohler, T., Barbeck, M., et al. (2010). Collagen-embedded hydroxylapatite-beta-tricalcium phosphate-silicon dioxide bone substitute granules assist rapid vascularization and promote cell growth. Biomedical Materials, 5, 25004.

    Article  PubMed  Google Scholar 

  • Griffin, J. L., Mann, C. J., Scott, J., Shoulders, C. C., & Nicholson, J. K. (2001). Choline containing metabolites during cell transfection: An insight into magnetic resonance spectroscopy detectable changes. FEBS Letters, 509, 263–266.

    Article  PubMed  CAS  Google Scholar 

  • Griffin, J. L., Pole, J. C., Nicholson, J. K., & Carmichael, P. L. (2003). Cellular environment of metabolites and a metabonomics study of tamoxifen in endometrial cells using gradient high resolution magic angle spinning 1H NMR spectroscopy. Biochimica et Biophysica Acta, 1619, 151–158.

    Article  PubMed  CAS  Google Scholar 

  • Gu, L., Park, J. H., Duong, K. H., Ruoslahti, E., & Sailor, M. J. (2010). Magnetic luminescent porous silicon microparticles for localized delivery of molecular drug payloads. Small (Weinheim an der Bergstrasse, Germany), 6, 2546–5252.

    Article  CAS  Google Scholar 

  • Gupta, S., Campbell, D., Derijard, B., & Davis, R. J. (1995). Transcription factor AFT2 regulation by the JNK signal transduction pathway. Science, 267, 389–393.

    Article  PubMed  CAS  Google Scholar 

  • Han, B., Guo, J., Abrahaley, T., Qin, L., Wang, L., Zheng, Y., et al. (2011). Adverse effect of nano-silicon dioxide on lung function of rats with or without ovalbumin immunization. PLoS ONE, 6, e17236.

    Article  PubMed  CAS  Google Scholar 

  • Jin, Y., Kannan, S., Wu, M., & Zhao, J. X. (2007). Toxicity of luminescent silica nanoparticles to living cells. Chemical Research in Toxicology, 20, 1126–1133.

    Article  PubMed  CAS  Google Scholar 

  • Lai, J. C., Ananthakrishnan, G., Jandhyam, S., Dukhande, V. V., Bhushan, A., Gokhale, M., et al. (2010). Treatment of human astrocytoma U87 cells with silicon dioxide nanoparticles lowers their survival and alter their expression of mitochondrial and cell signaling proteins. International Journal of Nanomedicine, 5, 715–723.

    Article  PubMed  CAS  Google Scholar 

  • Maiorano, G., Sabella, S., Sorce, B., Brunetti, V., Malvindi, M. A., Cingolani, R., et al. (2010). Effects of cell culture media on the dynamic formation of protein-nanoparticle complexes and influence on the cellular response. ACS Nano, 4, 7481–7491.

    Article  PubMed  CAS  Google Scholar 

  • Mazurek, S., & Eigenbroadt, E. (2003). The tumor metabolome. Anticancer Research, 23, 1149–1154.

    PubMed  CAS  Google Scholar 

  • Mbeh, D. A., Franҫa, R., Merhi, Y., Zhang, X. F., Veres, T., Sacher, E., et al. (2012). In vitro biocompatibility assessment of functionalized magnetite nanoparticles: Biological and cytotoxicological effects. Journal of Biomedical Materials Research, Part A, 100A, 1637–1646.

    Article  CAS  Google Scholar 

  • Micceli, A. T., Miccheli, A., Di Clemente, R., Valerio, M., Coluccia, P., Bizzari, M., et al. (2006). NMR-based metabolic profiling of human hepatoma cells in relation to cell growth by culture media analysis. Biochimica et Biophysica Acta, 1760, 1723–1731.

    Article  Google Scholar 

  • Mingeot-Leclercq, M. P., Brasseur, R., & Schanck, A. (1995). Molecular-parameters involved in aminoglycoside nephrotoxicity. Journal of Toxicology and Environment Health, 44, 263–300.

    Article  CAS  Google Scholar 

  • Mohamed, B. M., Verma, N. K., Prina-Mello, A., Williams, Y., Davies, A. M., Bakos, G., et al. (2011). Activation of stress-related signaling pathway in human cells upon SiO2 nanoparticles exposure as an early indicator of cytotoxicity. Journal of Nanobiotechnology, 9, 29.

    Article  PubMed  CAS  Google Scholar 

  • Moka, D., Vorreuther, R., Schicha, H., Spraul, M., Humpfer, E., Lipinski, M., et al. (1997). Magic angle spinning proton nuclear magnetic resonance spectroscopic analysis of intact kidney tissue samples. Analytical Communications, 34, 107–109.

    Article  CAS  Google Scholar 

  • Nishida, K., Nakatani, T., Ohishi, A., Okuda, H., Higashi, Y., Matsuo, T., et al. (2012). Mitochondrial dysfunction is involved in P2X7 receptor-mediated neuronal cell death. Journal of Neurochemistry, 122, 1118–1128.

    Article  PubMed  CAS  Google Scholar 

  • Oliveira, P. F., Alves, M. G., Rato, L., Silva, J., Sá, R., Barros, A., et al. (2011). Influence of 5α-dihydroxtestosterone and 17β-estradiol on human Sertoli cells metabolism. International Journal of Andrology, 34, e612–e620.

    Article  PubMed  CAS  Google Scholar 

  • Rato, L., Alves, M. G., Socorro, S., Carvalho, R. A., Cavaco, J. E., & Oliveira, P. F. (2012). Metaoblic modulation induced by oestradiol and DHT in immature rat Sertoli cells cultured in vitro. Bioscience Reports, 32, 61–69.

    Article  PubMed  CAS  Google Scholar 

  • Robinson, G. L., Dinsdale, D., MacFarlane, M., & Cain, K. (2012). Switching from aerobic glycolysis to oxidative phosphorylation modulates the sensitivity of mantle cell lymphoma cells to TRAIL. Oncogene, 31, 4996–5006.

    Article  PubMed  CAS  Google Scholar 

  • Roy, I., Ohulchanskyy, T. Y., Bharali, D. J., Pudavar, H. E., Mistretta, R. A., Kaur, N., et al. (2005). Optical tracking of organically modified silica nanoparticles as DNA carriers: a nonviral, nanomedicine approach for gene delivery. Proceedings of the National Academy of Sciences of the United States of America, 102, 279–284.

    Article  PubMed  CAS  Google Scholar 

  • Sharma, H. S., Patnaik, R., Sharma, A., Sjöquist, P. O., & Lafuente, J. V. (2009). Silicon dioxide nanoparticles (SiO2, 40–50 nm) exacerbate pathophysiology of traumatic spinal cord injury and deteriorate functional outcome in the rat. An experimental study using pharmacological and morphological approaches. Journal of Nanoscience and Nanotechnology, 9, 4970–4980.

    Article  PubMed  CAS  Google Scholar 

  • Trygg, J., Holmes, E., & Lundstedt, T. (2007). Chemometrics in metabonomics. Journal of Proteome Research, 6, 469–479.

    Article  PubMed  CAS  Google Scholar 

  • Tsai, C. P., Chen, C. Y., Huang, Y., Chang, F. H., & Mou, C. Y. (2009). Monoclonal antibody—functionalized mesoporous silica nanoparticles (MSN) for selective targeting breast cancer cells. Journal of Materials Chemistry, 19, 5737–5743.

    Article  CAS  Google Scholar 

  • Vivero-Escoto, J. L., Slowing, I. I., Trewyn, B. G., & Lin, V. S. Y. (2010). Mesoporous silica nanoparticles for intracellular controlled drug delivery. Small (Weinheim an der Bergstrasse, Germany), 6, 1952–1967.

    Article  CAS  Google Scholar 

  • Waters, N. J., Garrod, S., Farrant, R. D., Haselden, J. N., Connor, S. C., & Connelly, J. (2000). High-resolution magic angle spinning 1H NMR spectroscopy of intact liver and kidney: Optimization of sample preparation procedures and biochemical stability of tissue during spectral acquisition. Analytical Biochemistry, 282, 16–23.

    Article  PubMed  CAS  Google Scholar 

  • Xu, Z., Wang, S. L., & Gao, H. W. (2010). Effects of nano-sized silicon dioxide on the structures and activities of three functional proteins. Journal of Hazardous Materials, 180, 375–383.

    Article  PubMed  CAS  Google Scholar 

  • Yang, M. S., Yu, L. C., & Gupta, R. C. (2005). Analysis of multiple metabolomic subset in vitro: Methodological considerations. Toxicology Mechanisms and Methods, 15, 29–32.

    Article  CAS  Google Scholar 

  • Yu, K., Guo, Y., Ding, X., Zhao, J., & Wang, Z. (2005). Synthesis of silica nanocubes by sol–gel method. Materials Letters, 59, 4013–4015.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We acknowledge the financial supports from the National Natural Science Foundation of China (20605025, 21175099, 81272581) and the Fundamental Research Funds for the Central Universities (2011121046). This work was carried out on the Xiamen Research Platform on Systems Biology of Metabolic Disease.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jianghua Feng.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 508 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Feng, J., Li, J., Wu, H. et al. Metabolic responses of HeLa cells to silica nanoparticles by NMR-based metabolomic analyses. Metabolomics 9, 874–886 (2013). https://doi.org/10.1007/s11306-013-0499-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11306-013-0499-8

Keywords

Navigation