Skip to main content
Log in

Electrospun Poly(p-dioxanone)/Poly(ester-urethane)ureas Composite Nanofibers for Potential Heart Valve Tissue Reconstruction

  • Article
  • Published:
Chinese Journal of Polymer Science Aims and scope Submit manuscript

Abstract

Electrospun nanofibrous mats represent a new generation of medical textiles with promising applications in heart valve tissue reconstruction. It is important for biomaterials to mimic the biological and mechanical microenvironment of native extracellular matrix (ECM). However, the major challenges are still remaining for current biomedical materials, including appropriate mechanical properties, biocompatibility, and hemocompatibility. In the present work, the novel composite nanofibrous mats of poly(p-dioxanone) (PDO) and poly(ester-urethane)ureas (PEUU) are fabricated by electrospinning system. The optimal combination ratio of PDO to PEUU may balance the mechanical properties and cellular compatibility to match the newly formed tissue. In PDO/PEUU composite nanofibrous mats, PEUU can provide the biomimetic elastomeric behavior, and PDO could endow the excellent biocompatibility. In comparison to nanofibrous mat of neat PDO, the composite showed significantly improved mechanical properties, with 5-fold higher initial elongation at break. Furthermore, human umbilical vein endothelial cells (HUVECs) were cultured on the composite to evaluate its ability to rapidly endothelialize as heart valve tissue engineering. The results revealed that PDO/PEUU composite nanofibrous mats could promote cell adhesion and proliferation, especially for the ratio of 60/40. Overall, PDO/PEUU composite nanofibrous mats (60/40) show the excellent mechanical properties, appropriate biocompatibility and hemocompatibility which meet the necessary norm for tissue engineering and may be suitable for potential heart valve tissue reconstruction.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Yang, G. Z.; Li, J. J.; Yu, D. G.; He, M. F.; Yang, J. H.; Williams, G. R. Nanosized sustained-release drug depots fabricated using modified tri-axial electrospinning. Acta Biomater. 2017, 53, 233–241.

    Article  CAS  PubMed  Google Scholar 

  2. Mogosanu, G. D.; Grumezescu, A. M. Natural and synthetic polymers for wounds and burns dressing. Int. J. Pharmaceut. 2014, 463, 127–136.

    Article  CAS  Google Scholar 

  3. Zhao, G. X.; Zhang, X. H.; Lu, T. J.; Xu, F. Recent advances in electrospun nanofibrous scaffolds for cardiac tissue engineering. Adv. Func. Mater. 2015, 25, 5726–5738.

    Article  CAS  Google Scholar 

  4. Luo, X. S.; Guo, Z. Z.; He, P.; Chen, T.; Ding, S.; Li, H. Study on structure, mechanical property and cell cytocompatibility of electrospun collagen nanofibers crosslinked by common agents. Int. J. Biol. Macromol. 2018, 113, 476–486.

    Article  CAS  PubMed  Google Scholar 

  5. Brown, J. H.; Das, P.; Di Vito, M. D.; Ivancic, D.; Tan, L. P.; Wertheim, J. A. Nanofibrous PLGA electrospun scaffolds modified with type I collagen influence hepatocyte function and support viability in vitro. Acta Biomater. 2018, 73, 217–227.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Francis, M. P.; Sachs, P. C.; Madurantakam, P. A.; Sell, S. A.; Elmore, L. W.; Bowlin, G. L.; Holt, S. E. Electrospinning adipose tissue-derived extracellular matrix for adipose stem cell culture. J. Biomed. Mater. Res. Part A 2012, 100A, 1716–1724.

    Article  CAS  Google Scholar 

  7. Yu, K.; Zhu, T. H.; Wu, Y.; Zhou, X. X.; Yang, X. C.; Wang, J.; Fang, J.; El-Hamshary, H.; Al-Deyab, S. S.; Mo, X. M. Incorporation of amoxicillin-loaded organic montmorillonite into poly(ester-urethane) urea nanofibers as a functional tissue engineering scaffold. Colloids Surf. B 2017, 151, 314–323.

    Article  CAS  Google Scholar 

  8. Jamadi, E. S.; Ghasemi-Mobarakeh, L.; Morshed, M.; Sadeghi, M.; Prabhakaran, M. P.; Ramakrishna, S. Synthesis of polyester urethane urea and fabrication of elastomeric nanofibrous scaffolds for myocardial regeneration. Mat. Sci. Eng C-Mater. 2016, 63, 106–116.

    Article  CAS  Google Scholar 

  9. Simon, D.; Rodriguez, J. F.; Carmona, M.; Serrano, A.; Borreguero, A. M. Glycolysis of advanced polyurethanes composites containing thermoregulating microcapsules. Chem. Eng. J. 2018, 350, 300–311.

    Article  CAS  Google Scholar 

  10. Wang, Z. G.; Yu, L. Q.; Ding, M. M.; Tan, H.; Li, J. H.; Fu, Q. A. Preparation and rapid degradation of nontoxic biodegradable polyurethanes based on poly(lactic acid)-poly(ethylene glycol)-poly(lactic acid) and L-lysine diisocyanate. Polym. Chem. 2011, 2, 601–607.

    Article  CAS  Google Scholar 

  11. Fang, J.; Ye, S. H.; Shankarraman, V.; Huang, Y. X.; Mo, X. M.; Wagner, W. R. Biodegradable poly(ester urethane)urea elastomers with variable amino content for subsequent functionalization with phosphorylcholine. Acta Biomater. 2014, 10, 4639–4649.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Hao, H. Y.; Shao, J. Y.; Deng, Y.; He, S.; Luo, F.; Wu, Y. K.; Li, J. H.; Tan, H.; Li, J. S.; Fu, Q. Synthesis and characterization of biodegradable lysine-based waterborne polyurethane for soft tissue engineering applications. Biomater. Sci. 2016, 4, 1682–1690.

    Article  CAS  PubMed  Google Scholar 

  13. Liu, J.; Jiang, Z. Z.; Zhang, S. M.; Liu, C.; Gross, R. A.; Kyriakides, T. R.; Saltzman, W. M. Biodegradation, biocompatibility, and drug delivery in poly(co-pentadecalactone-co-p-dioxanone) copolyesters. Biomaterials 2011, 32, 6646–6654.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Bai, Y.; Wang, P. Q.; Bai, W.; Zhang, L. F.; Li, Q.; Xiong, C. D. Miscibility, thermal and mechanical properties of poly(paradioxanone)/ poly(lactic-co-glycolic acid) blends. J. Polym. Environ. 2015, 23, 367–373.

    Article  CAS  Google Scholar 

  15. Du, J.; Zhu, T. H.; Yu, H. Y.; Zhu, J. J.; Sun, C. B.; Wang, J. C.; Chen, S. H.; Wang, J. H.; Guo, X. R. Potential applications of three-dimensional structure of silk fibroin/poly(ester-urethane) urea nanofibrous scaffold in heart valve tissue engineering. Appl. Surf. Sci. 2018, 447, 269–278.

    Article  CAS  Google Scholar 

  16. Hong, Y.; Ye, S. H.; Pelinescu, A. L.; Wagner, W. R. Synthesis, characterization, and paclitaxel release from a biodegradable, elastomeric, poly(ester urethane)urea bearing phosphorylcholine groups for reduced thrombogenicity. Biomacromolecules 2012, 13, 3686–3694.

    Article  CAS  PubMed  Google Scholar 

  17. Guo, R. J.; Ward, C. L.; Davidson, J. M.; Duvall, C. L.; Wenke, J. C.; Guelcher, S. A. A transient cell-shielding method for viable MSC delivery within hydrophobic scaffolds polymerized in situ. Biomaterials 2015, 54, 21–33.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Nair, P. A.; Ramesh, P. Electrospun biodegradable calcium containing poly(ester-urethane)urea: Synthesis, fabrication, in vitro degradation, and biocompatibility evaluation. J. Bio. Mater. Res-Part A 2013, 101, 1876–1887.

    Article  CAS  Google Scholar 

  19. Zhu, T. H.; Yu, K.; Bhutto, M. A.; Guo, X. R.; Shen, W.; Wang, J.; Chen, W. M.; El-Hamshary, H.; Al-Deyab, S. S.; Mo, X. M. Synthesis of RGD-peptide modified poly(ester-urethane) urea electrospun nanofibers as a potential application for vascular tissue engineering. Chem. Eng. J. 2017, 315, 177–190.

    Article  CAS  Google Scholar 

  20. Mi, H. Y.; Jing, X.; Yu, E.; Nulty, J. M.; Peng, X. F.; Turng, L. S. Fabrication of triple-layered vascular scaffolds by combining electrospinning, braiding, and thermally induced phase separation. Mater. Lett. 2015, 161, 305–308.

    Article  CAS  Google Scholar 

  21. Zheng, F. Y.; Wang, S. G.; Wen, S. H.; Shen, M. W.; Zhu, M. F.; Shi, X. Y. Characterization and antibacterial activity of amoxicillin-loaded electrospun nano-hydroxyapatite/poly(lactic-co-glycolic acid) composite nanofibers. Biomaterials 2013, 34, 1402–1412.

    Article  CAS  PubMed  Google Scholar 

  22. Hong, Y.; Huber, A.; Takanari, K.; Amoroso, N. J.; Hashizume, R.; Badylak, S. F.; Wanger, W. R. Mechanical properties and in vivo behavior of a biodegradable synthetic polymer microfiberextracellular matrix hydrogel biohybrid scaffold. Biomaterials 2011, 32, 3387–3394.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Xiang, P.; Wang, S. S.; He, M.; Han, Y. H.; Zhou, Z. H.; Chen, D. L.; Li, M.; Ma, L. Q. The in vitro and in vivo biocompatibility evaluation of electrospun recombinant spider silk protein/PCL/gelatin for small caliber vascular tissue engineering scaffolds. Colloids Surf. B. 2018, 163, 19–28.

    Article  CAS  Google Scholar 

  24. Sabitha, M.; Rajetciv, S. Synthesis and characterization of biocompatible tigecycline imbibed electrospun poly epsiloncaprolactone urethane urea fibers. RSC Adv. 2015, 5, 2249–2257.

    Article  CAS  Google Scholar 

  25. Song, N. J.; Jiang, X.; Li, J. H.; Pang, Y.; Li, J. S.; Tan, H.; Fu, Q. The degradation and biocompatibility of waterborne biodegradable polyurethanes for tissue engineering. Chinese J. Polym. Sci. 2013, 31, 1451–1462.

    Article  CAS  Google Scholar 

  26. Ho, C. M. B.; Mishra, A.; Lin, P. T. P.; Ng, S. H.; Yeong, W. Y.; Kim, Y. J.; Yoon, Y. J. 3D printed polycaprolactone carbon nanotube composite scaffolds for cardiac tissue engineering. Macromol. Biosci. 2017, 17, 1600250.

    Article  CAS  Google Scholar 

  27. Nie, W. C.; Dang, H. C.; Wang, X. L.; Song, F.; Wang, Y. Z. One-step enzymatic synthesis of poly(p-dioxanone-co-butylene-co-succinate) copolyesters with well-defined structure and enhanced degradability. Polymer 2017, 111, 107–114.

    Article  CAS  Google Scholar 

  28. Jiang, W. L.; Li, L.; Zhang, D.; Huang, S. S.; Jing, Z.; Wu, Y. K.; Zhao, Z. H.; Zhou, S. B. Incorporation of aligned PCL-PEG nanofibers into porous chitosan scaffolds improved the orientation of collagen fibers in regenerated periodontium. Acta Biomater. 2015, 25, 240–252.

    Article  CAS  PubMed  Google Scholar 

  29. Ico, G.; Showalter, A.; Bosze, W.; Gott, S. C.; Kim, B. S.; Rao, M. P.; Myung, N. V.; Nam, J. Size-dependent piezoelectric and mechanical properties of electrospun P(VDF-TrFE) nanofibers for enhanced energy harvesting. J. Mater. Chem. A 2016, 4, 2293–2304.

    Article  CAS  Google Scholar 

  30. Lim, D. J.; Sim, M.; Heo, Y.; Jun, H. W.; Park, H. Facile method for fabricating uniformly patterned and porous nanofibrous scaffolds for tissue engineering. Macromol. Res. 2015, 23, 1152–1158.

    Article  CAS  Google Scholar 

  31. Yin, N.; Chen, S. Y.; Cao, Y. M.; Wang, H. P.; Wu, Q. K. Improvement in mechanical properties and biocompatibility of biosynthetic bacterial cellulose/lotus root starch composites. Chinese J. Polym. Sci. 2017, 35, 354–364.

    Article  CAS  Google Scholar 

  32. Deuber, F.; Mousavi, S.; Federer, L.; Adlhart, C. Amphiphilic nanofiber-based aerogels for selective liquid absorption from electrospun biopolymers. Adv. Mater. Inter. 2017, 4, 1700065.

    Article  CAS  Google Scholar 

  33. Sadat-Shojai, M.; Khorasani, M. T.; Jamshidi, A. A new strategy for fabrication of bone scaffolds using electrospun nano-HAp/PHB fibers and protein hydrogels. Chem. Eng. J. 2016, 289, 38–47.

    Article  CAS  Google Scholar 

  34. Hu, J. X.; Cai, X.; Mo, S. B.; Chen, L.; Shen, X. Y.; Tong, H. Fabrication and characterization of chitosan-silk fibroin/hydroxyapatite composites via in situ precipitation for bone tissue engineering. Chinese J. Polym. Sci. 2015, 33, 1661–1671.

    Article  CAS  Google Scholar 

  35. Rezk, A. L.; Unnithan, A. R.; Park, C. H.; Kim, C. S. Rational design of bone extracellular matrix mimicking tri-layered composite nanofibers for bone tissue regeneration. Chem. Eng. J. 2018, 350, 812–823.

    Article  CAS  Google Scholar 

  36. Montgomery, M.; Ahadian, S.; Huyer, L. D.; Lo Rito, M.; Civitarese, R. A.; Vanderlaan, R. D.; Wu, J.; Reis, L. A.; Momen, A.; Akbari, S.; Pahnke, A.; Li, R. K.; Caldarone, C. A.; Radisic, M. Flexible shape-memory scaffold for minimally invasive delivery of functional tissues. Nat. Mater. 2017, 16, 1038–1046.

    Article  CAS  PubMed  Google Scholar 

  37. Nachlas, A. L. Y.; Li, S. Y.; Jha, R.; Singh, M.; Xu, C. H.; Davis, M. E. Human iPSC-derived mesenchymal stem cells encapsulated in PEGDA hydrogels mature into valve interstitiallike cells. Acta Biomater. 2018, 71, 235–246.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Merkle, V. M.; Martin, D.; Hutchinson, M.; Tran, P. L.; Behrens, A.; Hossainy, S.; Sheriff, J.; Bluestein, D.; Wu, X. Y.; Slepian, M. J. Hemocompatibility of poly(vinyl alcohol)-gelatin core-shell electrospun nanofibers: A scaffold for modulating platelet deposition and activation. ACS Appl. Mater. Interfaces 2015, 7, 8302–8312.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Chen, X.; Wang, J.; An, Q. Z.; Li, D. W.; Liu, P. X.; Zhu, W.; Mo, X. M. Electrospun poly(L-lactic acid-co-e-caprolactone) fibers loaded with heparin and vascular endothelial growth factor to improve blood compatibility and endothelial progenitor cell proliferation. Colloids Surf. B 2015, 128, 106–114.

    Article  CAS  Google Scholar 

  40. Anselmo, A. C.; Modery-Pawlowski, C. L.; Menegatti, S.; Kumar, S.; Vogus, D. R.; Tian, L. L.; Chen, M.; Squires, T. M.; Sen Gupta, A.; Mitragotri, S. Platelet-like nanoparticles: Mimicking shape, flexibility, and surface biology of platelets to target vascular injuries. ACS Nano 2014, 8, 11243–11253.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Wang, R.; Levi-Polyanchenko, N.; Morykwas, M.; Argenta, L.; Wagner, W. D. Novel nanofiber-based material for endovascular scaffolds. J. Bio. Mater. Res. Part A 2015, 103, 1150–1158.

    Article  CAS  Google Scholar 

  42. Augustine, R.; Dan, P.; Sosnik, A.; Kalarikkal, N.; Tran, N.; Vincent, B.; Thomas, S.; Menu, P.; Rouxel, D. Electrospun poly(vinylidene fluoride-trifluoroethylene)/zinc oxide nanocomposite tissue engineering scaffolds with enhanced cell adhesion and blood vessel formation. Nano Res. 2017, 10, 3358–3376.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was financially supported by the Capacity Building Project of Some Local Colleges and Universities in Shanghai (No. 17030501200), the National Natural Science Foundation of China (No. 81501595), Youth Foundation of Zhongshan Hospital (No. 2015ZSQN09), Talent Training Program Foundation for the Excellent Youth Supported by Zhongshan Hospital (No. 2017ZSYQ24), and Innovation Fund of Zhongshan Hospital (No. 2017ZSCX05).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Si-Hao Chen or Tong-He Zhu.

Electronic supplementary material

10118_2019_2231_MOESM1_ESM.pdf

Electrospun Poly(p-Dioxanone)/Poly(Ester-urethane)ureas Composite Nanofibers for Potential Heart Valve Tissue Reconstruction

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Du, J., Wang, JH., Yu, HY. et al. Electrospun Poly(p-dioxanone)/Poly(ester-urethane)ureas Composite Nanofibers for Potential Heart Valve Tissue Reconstruction. Chin J Polym Sci 37, 560–569 (2019). https://doi.org/10.1007/s10118-019-2231-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10118-019-2231-2

Keywords

Navigation