Skip to main content
Log in

The degradation and biocompatibility of waterborne biodegradable polyurethanes for tissue engineering

  • Paper
  • Published:
Chinese Journal of Polymer Science Aims and scope Submit manuscript

Abstract

To better investigate the degradation and biocompatibility of waterborne biodegradable polyurethanes for tissue engineering, a series of new waterborne biodegradable polyurethanes (PEGPUs) with low degree of crosslinking was synthesized using IPDI, BDO and L-lysine as hard segments, PCL and PEG as soft segment. The bulk structures and properties of the prepared polyurethanes were characterized by Fourier transform infrared spectroscopy (FTIR), differential scanning calorimetry (DSC), tensile mechanical tests and water contact angle (WCA) measurements. The degree of microphase separation was slightly improved because of the lowered crosslinking degree of these PEGPUs in comparison with the high cross-linking degree samples, leading to good mechanical properties, as indicated by DSC and stress-strain data. Moreover, biodegradability of the polyurethanes was evaluated in phosphate buffer solutions (PBS) under different pH values and enzymatic solution at pH 7.4 through weight loss monitoring. The results suggested that the degradation of these PEGPUs was closely related to their bulk and surface properties. And the degradation products didn’t show apparent inhibition effect against fibroblasts in vitro. These studies demonstrated that the waterborne biodegradable polyurethanes could find potential use in soft tissue engineering and tissue regeneration.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Lelah, M.D. and Cooper, S.L., Crc Press, Inc., 1986: 225

  2. Plank, H., Syre, I., Dauner, M. and Egberg, G., Polyurethane in biomedical engineering: II. progress in biomedical engineering, Elsevier Science, Amsterdam, 1987, p. 3

    Google Scholar 

  3. Stokes, K., Mcvenes, R. and Anderson, J.M., J. Biomater. Appl., 1995, 9(4): 321

    CAS  Google Scholar 

  4. Gunatillake, P.A., Martin, D.J., Meijs, G.F., Mccarthy, S.J. and Adhikari, R., Aust. J. Chem., 2003, 56(6): 545

    Article  CAS  Google Scholar 

  5. Simmons, A., Hyvarinen, J., Odell, R.A., Martin, D.J., Gunatillake, P.A., Noble K. R. and Poole-Warren, L.A., Biomaterials, 2004, 25(20): 4887

    Article  CAS  Google Scholar 

  6. Tan, D.S., Zhang, X.Q., Wang, J.C., Li, J.H., Tan, H. and Fu, Q., Chinese J. Polym. Sci., 2011, 29(5): 615

    Article  CAS  Google Scholar 

  7. Tan, D.S., Zhang, X.Q., Li J.H., Tan, H. and Fu, Q., J. Biomed. Mater. Res. Part A., 2012, 100A(2): 380

    Article  CAS  Google Scholar 

  8. Ding, M.M., Li, J.H., Tan, H. and Fu, Q., Soft Matter, 2012, 8(20): 5414

    Article  CAS  Google Scholar 

  9. Guelcher, S.A., Tissue. Eng. Part B Rev., 2008, 14(1): 3

    Article  CAS  Google Scholar 

  10. Ulery, B.D., Nair, L.S. and Laurencin, C.T., J. Polym. Sci., Part B: Polym. Phys., 2011, 49(12): 832

    Article  CAS  Google Scholar 

  11. Laschke, M.W., Strohe, A., Scheuer, C., Eglin, D., Verrier, S., Alini, M., Pohlemann, T. and Menger, M.D., Acta Biomaterialia, 2009, 5(6): 1991

    Article  CAS  Google Scholar 

  12. Ye, L., Wu, X., Geng, X., Duan, Y., Gu, Y., Zhang, A., Zhang, J. and Feng, Z., Chinese J. Polym. Sci., 2010, 28(5): 829

    Article  CAS  Google Scholar 

  13. Santerre, J.P., Woodhouse, K., Laroche, G. and Labow, R.S., Biomaterials, 2005, 26(35): 7457

    Article  CAS  Google Scholar 

  14. Guan, J., Fujimoto, K.L., Sacks, M.S. and Wagner, W.R., Biomaterials, 2005, 26(18): 3961

    Article  CAS  Google Scholar 

  15. Grad, S., Kupcsik, L., Gorna, K., Gogolewski, S. and Alini, M., Biomaterials, 2003, 24(28): 5163

    Article  CAS  Google Scholar 

  16. Warrer, K., Karring, T., Nyman, S. and Gogolewski, S., J. Clin. Periodontol., 1992, 19(9): 633

    Article  CAS  Google Scholar 

  17. Galletti, G., Gogolewski, S., Ussia, G. and Farruggia, F., Ann. Vasc. Surg., 1989, 3(3): 236

    Article  CAS  Google Scholar 

  18. Ding, M.M., He, X. L., Wang, Z.G., Li, J.H., Tan, H., Deng, H., Fu, Q. and Gu, Q., Biomaterials, 2011, 32(35): 9515

    Article  CAS  Google Scholar 

  19. Ding, M.M., Li, J.H., He, X.L., Song, N.J., Tan, H., Zhang, Y., Zhou, L., Gu, Q., Deng, H. and Fu, Q., Adv. Mater., 2012, 24(27): 3639

    Article  CAS  Google Scholar 

  20. Bruin, P., Smedinga, J., Pennings, A.J. and Jonkman, M.F., Biomaterials, 1990, 11(4): 291

    Article  CAS  Google Scholar 

  21. Yeganeh, H., Jamshidi, H. and Jamshidi, S., Polym. Int., 2007, 56(1): 41

    Article  CAS  Google Scholar 

  22. Gorna, K. and Gogolewski, S., J. Biomed. Mater. Res., 2002, 60(4): 592

    Article  CAS  Google Scholar 

  23. Guan, J., Sacks, M.S., Beckman, E.J. and Wagner, W.R., Biomaterials, 2004, 25(1): 85

    Article  CAS  Google Scholar 

  24. Kylmä, J. and Seppälä, J.V., Macromolecules, 1997, 30(10): 2876

    Article  Google Scholar 

  25. Guan, J., Sacks, M.S., Beckman, E.J. and Wagner, W.R., J. Biomed. Mater. Res., 2002, 61(3): 493

    Article  CAS  Google Scholar 

  26. Ding, M.M., Zhou, L.J., Fu, X.T., Tan, H., Li, J.H. and Fu, Q., Soft Matter, 2010, 6(9): 2087

    Article  CAS  Google Scholar 

  27. Ding, M.M., He, X.L., Zhou, L.J., Li, J.H., Tan, H., Fu, X.T. and Fu, Q., J. Controlled Release, 2011, 1521: E87

    Article  Google Scholar 

  28. Jiang, X., Wang, K., Ding, M.M., Li, J.H., Tan, H., Wang, Z.G. and Fu, Q., J. Mater. Sci. Mater. Med., 2011, 22(4): 819

    Article  CAS  Google Scholar 

  29. Jiang, X., Yu, F., Wang, Z.G., Li, J.H., Tan, H., Ding, M.M. and Fu, Q., J. Biomater. Sci. Polym. Ed., 2010, 21(12): 1637

    Article  CAS  Google Scholar 

  30. Nair, L.S. and Laurencin, C.T., Prog. Polym. Sci., 2007, 32(8–9): 762

    Article  CAS  Google Scholar 

  31. Santerre, J.P., Woodhouse, K., Laroche, G. and Labow, R.S., Biomaterials, 2005, 26(35): 7457

    Article  CAS  Google Scholar 

  32. Jovanovic, D., Roukes, F.V., Löber, A., Engels, G.E., Oeveren, W.V., Seijen, X.J., Luyn, M.J.A., Harmsen, M.C. and Schouten, A.J., Materials, 2011, 4(10): 1705

    Article  CAS  Google Scholar 

  33. Lotz, A.S., Havla, J.B., Richter, E., Frölich, K., Staudenmaier, R., Hagen, R. and Kleinsasser, N.H., Toxicol. Lett., 2009, 190(2): 128

    Article  CAS  Google Scholar 

  34. Mcbane, J.E., Sharifpoor, S., Cai, K., Labow, R.S. and Santerre, J.P., Biomaterials, 2011, 32(26): 6034

    CAS  Google Scholar 

  35. Ding, M.M., Qian, Z., Wang, J.C., Li, J.H., Tan, H., Gu, Q. and Fu, Q., Polym. Chem., 2011, 2(4): 885

    Article  CAS  Google Scholar 

  36. Zhou, L.J., Yu, L.Q., Ding, M.M., Li, J.H., Tan, H., Wang, Z.G. and Fu, Q., Macromolecules, 2011, 44(4): 857

    Article  CAS  Google Scholar 

  37. Jiang, X., Li, J.H., Ding, M.M., Tan, H., Ling, Q., Zhong, Y. and Fu, Q., Eur. Polym. J., 2007, 43(5): 1838

    Article  CAS  Google Scholar 

  38. Srichatrapimuk, V.W. and Cooper, S.L., J. Macromol. Sci. Phys., 1978, 15(2): 267

    Article  Google Scholar 

  39. Miller, J.A., Lin, S.B., Hwang, K.K.S., Wu, K.S., Gibson, P.E. and Cooper, S.L., Macromolecules, 1985, 18(1): 32

    Article  CAS  Google Scholar 

  40. Coleman, M.M., Skrovanek, D.J., Hu, J. and Painter, P.C., Macromolecules, 1988, 21(1): 59

    Article  CAS  Google Scholar 

  41. Tanaka, T., Yokoyama, T. and Yamaguchi, Y., J. Polym. Sci: Part A Polym. Chem., 1968, 6(8): 2137

    Article  CAS  Google Scholar 

  42. Sung, C.S.P. and Schneider, N.S., Macromolecules, 1975, 8(1): 68

    Article  CAS  Google Scholar 

  43. Wang, C.B. and Cooper, S.L, Macromolecules, 1983, 16(5): 775

    Article  CAS  Google Scholar 

  44. Roh, H.W., Song, M.J., Han, D.K., Lee, D.S., Ahn, J.H. and Kim, S.C., J. Biomater. Sci. Polym. Ed., 1999, 10(1): 123

    Article  CAS  Google Scholar 

  45. Sperling, L.H. and Fay, J.J., Polym. Adv. Technol., 1991, 2(1): 49

    Article  CAS  Google Scholar 

  46. Hourston, D.J. and Schäfer, F.U., J. Appl. Polym. Sci., 1996, 62(12): 2025

    Article  CAS  Google Scholar 

  47. Liaw, D.J., J. Appl. Polym. Sci., 1997, 66(7): 1251

    Article  CAS  Google Scholar 

  48. Adhikari, R., Gunatillake, P.A., Griffiths, I., Tatai, L., Wickramaratna, M., Houshyar, S., Moore, T., Mayadunne, R., Field, J. and Mcgee, M., Biomaterials, 2008, 29(28): 3762

    Article  CAS  Google Scholar 

  49. Parrag, I.C. and Woodhouse, K.A., J. Biomater. Sci. Polym. Ed., 21, 2010, 6(7): 843

    Article  Google Scholar 

  50. Yeganeh, H. and Hojati-Talemi, P., Polym. Degrad. Stabil., 2007, 92(3): 480

    Article  CAS  Google Scholar 

  51. Skarja, G.A. and Woodhouse, K.A., J. Biomater. Sci. Polym. Ed., 1998, 9(3): 271

    Article  CAS  Google Scholar 

  52. Skarja, G.A. and Woodhouse, K.A., Sci. Polym. Ed., 2001, 12(8): 851

    CAS  Google Scholar 

  53. Zhang, C., Wen, X., Vyavahare, N.R. and Boland, T., Biomaterials, 2008, 29(28): 3781

    Article  CAS  Google Scholar 

  54. Gisselfält, K., Edberg, B. and Flodin, P., Biomacromolecules, 2002, 3(5): 951

    Article  Google Scholar 

  55. Wirpsza, Z., Kemp, T.J. and Skup, A., Polyurethanes: chemistry, technology and applications. Ellis Horwood, New York, 1993, p. 106

    Google Scholar 

  56. Pitt, C.G. and Gu, Z.W., J. Controlled Release, 1987, 4(4): 283

    Article  CAS  Google Scholar 

  57. Gogolewski, S., Colloid. Polym. Sci., 1978, 256(4): 323

    Article  CAS  Google Scholar 

  58. Tokiwa, Y., Suzuki, T. and Takeda, K., Agric. Biol. Chem., 1988, 52(8): 1937

    Article  CAS  Google Scholar 

  59. Darwis, D., Mitomo, H., Enjoji, T., Yoshii, F. and Makuuchi, K., Polym. Degrad. Stabil., 1998, 62(2): 259

    Article  CAS  Google Scholar 

  60. Timmer, M.D., Shin, H., Horch, R.A., Ambrose, C.G. and Mikos, A.G., Biomacromolecules, 2003, 4(4): 1026

    Article  CAS  Google Scholar 

  61. Ding, M.M., Li, J.H., Fu, X.T., Zhou, J., Tan, H., Gu, Q. and Fu, Q., Biomacromolecules, 2009, 10(10): 2857

    Article  CAS  Google Scholar 

  62. Zhou, L.J., Liang, D., He, X.L., Li, J.H., Tan, H., Li, J.S., Fu, Q. and Gu, Q., Biomaterials, 2012, 33(9): 2734

    Article  CAS  Google Scholar 

  63. Zhang, X.Q., Jiang, X., Li, J.H., Liu, J., Tan, H., Zhong, Y.P. and Fu, Q., Chinese J. Polym. Sci., 2008, 26(2): 203

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Yong Pang  (庞勇) or Hong Tan  (谭鸿).

Additional information

This work was financially supported by the National Natural Science Foundation of China (Nos. 51073104 and 51173118), the Changjiang Scholars and Innovative Research Teams in Universities (No. IRT1163) and the Sichuan Provincial Science Fund for Distinguished Young Scholars (No. 09ZQ026-024).

Rights and permissions

Reprints and permissions

About this article

Cite this article

Song, Nj., Jiang, X., Li, Jh. et al. The degradation and biocompatibility of waterborne biodegradable polyurethanes for tissue engineering. Chin J Polym Sci 31, 1451–1462 (2013). https://doi.org/10.1007/s10118-013-1315-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10118-013-1315-7

Keywords

Navigation