Skip to main content
Log in

Modified Inertial Projection Method for Solving Pseudomonotone Variational Inequalities with Non-Lipschitz in Hilbert Spaces

  • Published:
Acta Mathematica Sinica, English Series Aims and scope Submit manuscript

Abstract

This paper deals with a class of inertial gradient projection methods for solving a variational inequality problem involving pseudomonotone and non-Lipschitz mappings in Hilbert spaces. The proposed algorithm incorporates inertial techniques and the projection and contraction method. The weak convergence is proved without the condition of the Lipschitz continuity of the mappings. Meanwhile, the linear convergence of the algorithm is established under strong pseudomonotonicity and Lipschitz continuity assumptions. The main results obtained in this paper extend and improve some related works in the literature.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Alvarez, F., Attouch, H.: An inertial proximal method for maximal monotone operators via discretization of a nonlinear oscillator with damping, Set-Valued Anal., 9, 3–11 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  2. Antipin, A. S.: On a method for convex programs using a symmetrical modification of the Lagrange function, Ekon. Mat. Metody, 12, 1164–1173 (1976)

    Google Scholar 

  3. Cai, G., Dong, Q. L., Peng, Y.: Strong convergence theorems for solving variational inequality problems with pseudo-monotone and non-Lipschitz operators, J. Optim. Theory Appl., 188, 447–472 (2021)

    Article  MathSciNet  MATH  Google Scholar 

  4. Cai, X., Gu, G., He, B.: On the O(1/t) convergence rate of the projection and contraction methods for variational inequalities with Lipschitz continuous monotone operators, Comput. Optim. Appl., 57, 339–363 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  5. Cegielski, A.: Iterative Methods for Fixed Point Problems in Hilbert Spaces, Lecture Notes in Mathematics, vol. 2057, Springer, Berlin, 2012

    MATH  Google Scholar 

  6. Censor, Y., Gibali A, Reich, S.: The subgradient extragradient method for solving variational inequalities in Hilbert space, J. Optim. Theory Appl., 148, 318–335 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  7. Censor, Y., Gibali, A., Reich, S.: Extensions of Korpelevich’s extragradient method for the variational inequality problem in Euclidean space, Optimization, 61, 1119–1132 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  8. Cottle, R. W., Yao, J. C.: Pseudo-monotone complementarity problems in Hilbert space, J. Optim. Theory Appl., 75, 281–295 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  9. Denisov, S. V., Semenov, V. V., Chabak, L. M.: Convergence of the modified extragradient method for variational inequalities with non-Lipschitz operators, Cybern. Syst. Anal., 51, 757–765 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  10. Dong, L. Q., Cho, J. Y., Zhong, L. L., et al.: Inertial projection and contraction algorithms for variational inequalities, J. Glob. Optim., 70, 687–704 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  11. Dong, Q. L., Gibali, A., Jiang, D.: A modified subgradient extragradient method for solving the variational inequality problem, Numer. Algorithms, 79, 927–940 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  12. Facchinei, F., Pang, J. S.: Finite-Dimensional Variational Inequalities and Complementarity Problems. Springer Series in Operations Research, vols. I and II. Springer, New York, 2003

    MATH  Google Scholar 

  13. Fichera, G.: Sul problema elastostatico di Signorini con ambigue condizioni al contorno, Atti Accad. Naz. Lincei Rend. Cl. Sci. Fis. Mat. Nat., 34, 138–142 (1963)

    MathSciNet  MATH  Google Scholar 

  14. Gibali, A., Thong, D. V., Tuan, P. A.: Two simple projection-type methods for solving variational inequalities, Anal. Math. Phys., 9, 220–2225 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  15. Goebel, K., Reich, S.: Uniform Convexity, Hyperbolic Geometry, and Nonexpansive Mappings, Marcel Dekker, New York, 1984

    MATH  Google Scholar 

  16. He, B. S.: A class of projection and contraction methods for monotone variational inequalities, Appl. Math. Optim., 35, 69–76 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  17. Karamardian, S., Schaible, S.: Seven kinds of monotone maps, J. Optim. Theory Appl., 66, 37–46 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  18. Kim, D. S., Vuong, P. T., Khanh P. D.: Qualitative properties of strongly pseudomonotone variational inequalities, Optim. Lett., 10, 1669–1679 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  19. Kinderlehrer, D., Stampacchia, G.: An Introduction to Variational Inequalities and Their Applications, Academic Press, New York, 1980

    MATH  Google Scholar 

  20. Korpelevich, G.M.: The extragradient method for finding saddle points and other problems, Ekon. Mat. Metody, 12, 747–756 (1976)

    MathSciNet  MATH  Google Scholar 

  21. Opial, Z.: Weak convergence of the sequence of successive approximations for nonexpansive mappings, Bull. Amer. Math. Soc., 73, 591–597 (1967)

    Article  MathSciNet  MATH  Google Scholar 

  22. Ortega, J. M., Rheinboldt, W. C.: Iterative Solution of Nonlinear Equations in Several Variables, Academic Press, New York, 1970

    MATH  Google Scholar 

  23. Polyak, B. T.: Some methods of speeding up the convergence of iteration methods, U.S.S.R. Comput. Math. Math. Phys., 4, 1–17 (1964)

    Article  Google Scholar 

  24. Stampacchia, G.: Formes bilineaires coercitives sur les ensembles convexes, C. R. Acad. Sci., 258, 4413–4416 (1964)

    MathSciNet  MATH  Google Scholar 

  25. Sun, D. F.: A class ofiterative methods for solving nonlinear projection equations, J. Optim. Theory Appl., 91, 123–140 (1996)

    Article  MathSciNet  Google Scholar 

  26. Thong, D. V., Hieu, D. V.: Modified subgradient extragradient method for variational inequality problems, Numer. Algorithms, 79, 597–610 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  27. Thong, D. V., Hieu, D. V., Rassias, T. M.: Self adaptive inertial subgradient extragradient algorithms for solving pseudomonotone variational inequality problems, Optimization Lett., 14, 115–144 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  28. Thong, D. V.: Extragradient method with a new adaptive step size for solving non-Lipschitzian pseudomonotone variational inequalities, Carpathian J. Math., 38, 503–516 (2022)

    Article  MathSciNet  MATH  Google Scholar 

  29. Vuong, P. T.: On the weak convergence of the extragradient method for solving pseudo-monotone variational inequalities, J. Optim. Theory Appl., 176, 399–409 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  30. Vuong P. T., Shehu, Y.: Convergence of an extragradient-type method for variational inequality with applications to optimal control problems, Numer. Algorithms, 81, 269–291 (2019)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Duong Viet Thong.

Ethics declarations

The authors declare no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Thong, D.V. Modified Inertial Projection Method for Solving Pseudomonotone Variational Inequalities with Non-Lipschitz in Hilbert Spaces. Acta. Math. Sin.-English Ser. 39, 2374–2392 (2023). https://doi.org/10.1007/s10114-023-2080-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10114-023-2080-3

Keywords

MR(2010) Subject Classification

Navigation