Skip to main content
Log in

A Smallness Condition Ensuring Boundedness in a Two-dimensional Chemotaxis-Navier—Stokes System involving Dirichlet Boundary Conditions for the Signal

  • Published:
Acta Mathematica Sinica, English Series Aims and scope Submit manuscript

Abstract

The chemotaxis-Navier—Stokes system

$$\left\{{\matrix{{{n_t} + u \cdot \nabla n = \Delta n - \nabla \cdot \left({n\nabla c} \right),} \hfill \cr {{c_t} + u \cdot \nabla c = \Delta c - nc,} \hfill \cr {{u_t} + \left({u \cdot \nabla} \right)u = \Delta u + \nabla P + n\nabla \phi ,\,\,\,\,\nabla \cdot u = 0} \hfill \cr}} \right.$$

is considered in a smoothly bounded planar domain Ω under the boundary conditions

$$\left({\nabla n - n\nabla c} \right) \cdot \nu = 0,\,\,\,\,\,\,c = {c_ *},\,\,\,\,\,u = 0,\,\,\,\,\,x \in \partial \Omega ,t > 0,$$

with a given nonnegative constant C. It is shown that if (n0, c0, u0) is sufficiently regular and such that the product \({\left\| {{n_0}} \right\|_{{L^1}\left(\Omega \right)}}\left\| {{c_0}} \right\|_{{L^\infty}\left(\Omega \right)}^2\) is suitably small, an associated initial value problem possesses a bounded classical solution with (n, c, u)|t=0 = (n0, c0, u0).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Bellomo, N., Bellouquid, A., Tao, Y., et al.: Toward a mathematical theory of Keller-Segel models of pattern formation in biological tissues. Math. Mod. Meth. Appl. Sci., 25, 1663–1763 (2015)

    Article  MathSciNet  Google Scholar 

  2. Black, T.: The Stokes limit in a three-dimensional chemotaxis-Navier-Stokes system. J. Math. Fluid Mech., 22, Paper No. 1, 35 pp. (2020)

  3. Braukhoff, M.: Global (weak) solution of the chemotaxis-Navier—Stokes equations with non-homogeneous boundary conditions and logistic growth Ann. Inst. Henri Poincaré Anal. Non Linéaire, 34, 1013–1039 (2017)

    Article  MathSciNet  Google Scholar 

  4. Braukhoff, M., Lankeit, J.: Stationary solutions to a chemotaxis-consumption model with realistic boundary conditions. Math. Mod. Meth. Appl. Sci., 29, 2033–2062 (2019)

    Article  MathSciNet  Google Scholar 

  5. Braukhoff, M., Tang, B. Q.: Global solutions for chemotaxis-Navier—Stokes system with Robin boundary conditions. J. Differential Equations, 269, 10630–10669 (2020)

    Article  MathSciNet  Google Scholar 

  6. Cao, X., Lankeit, J.: Global classical small-data solutions for a three-dimensional chemotaxis Navier-Stokes system involving matrix-valued sensitivities. Calc. Var. Partial Differential Eq., 55, Art. 107, 39 pp. (2016)

  7. Ding, M., Winkler, M.: Small-data solutions in Keller—Segel systems involving rapidly decaying diffusivities. NoDEA-Nonlinear Diff., 28(5), (2021)

  8. Duan, R., Lorz, A., Markowich, P. A.: Global solutions to the coupled chemotaxis-fluid equations. Comm. Partial Differential Equations, 35, 1635–1673 (2010)

    Article  MathSciNet  Google Scholar 

  9. Fujiwara, D., Morimoto, H.: An Lr-theorem of the Helmholtz decomposition of vector fields. J. Fac. Sci. Univ. Tokyo, 24, 685–700 (1977)

    MathSciNet  MATH  Google Scholar 

  10. Giga, Y.: Solutions for semilinear parabolic equations in Lp and regularity of weak solutions of the Navier—Stokes system. J. Differential Equations, 61, 186–212 (1986)

    Article  Google Scholar 

  11. Gilbarg, D., Trudinger, N. S.: Elliptic Partial Differential Equations of Second Order, Second Edition, Springer-Verlag, Berlin, 1983

    MATH  Google Scholar 

  12. Gross, L.: Logarithmic Sobolev inequalities. Am. J. Math., 97, 1061–1083 (1975)

    Article  MathSciNet  Google Scholar 

  13. Ishida, S.: Global existence and boundedness for chemotaxis-Navier—Stokes systems with position-dependent sensitivity in 2D bounded domains. Discrete Contin. Dyn. Syst., 35, 3463–3482 (2015)

    Article  MathSciNet  Google Scholar 

  14. Lankeit, J.: Long-term behavior in a chemotaxis-fluid system with logistic source. Math. Models Methods Appl. Sci., 26, 2071–2109 (2016)

    Article  MathSciNet  Google Scholar 

  15. Ladyzenskaja, O. A., Solonnikov, V. A., Ural’ceva, N. N.: Linear and Quasi-Linear Equations of Parabolic Type. Amer. Math. Soc. Transl., Vol. 23, Providence, RI, 1968

  16. Peng, Y., Xiang, Z.: Global existence and convergence rates to a chemotaxis-fluids system with mixed boundary conditions. J. Differential Eq., 267, 1277–1321 (2019)

    Article  MathSciNet  Google Scholar 

  17. Quittner, P., Souplet, Ph.: Superlinear parabolic problems. Blow-up, global existence and steady states. Birkhäuser Advanced Texts, Basel/Boston/Berlin, 2007

    MATH  Google Scholar 

  18. Rothaus, O. S.: Analytic inequalities, isoperimetric inequalities and logarithmic Sobolev inequalities. J. Funct. Anal., 64, 296–313 (1985)

    Article  MathSciNet  Google Scholar 

  19. Sohr, H.: The Navier—Stokes Equations. An Elementary Functional Analytic Approach. Birkhäuser, Basel, 2001

    MATH  Google Scholar 

  20. Tao, Y., Winkler, M.: Locally bounded global solutions in a three-dimensional chemotaxis-Stokes system with non-linear diffusion. Ann. Inst. Henri Poincaré Anal. Non Linéaire, 30, 157–178 (2013)

    Article  MathSciNet  Google Scholar 

  21. Tian, Y., Xiang, Z.: Global solutions to a 3D chemotaxis-Stokes system with nonlinear cell diffusion and Robin signal boundary condition. J. Differential Eq., 269, 2012–2056 (2020)

    Article  MathSciNet  Google Scholar 

  22. Tian, Y., Xiang, Z.: Global boundedness to a 3D chemotaxis-Stokes system with porous medium cell diffusion and general sensitivity, Advances in Nonlinear Analysis, to appear

  23. Tuval, I., Cisneros, L., Dombrowski, C., et al.: Bacterial swimming and oxygen transport near contact lines. Proc. Nat. Acad. Sci. USA, 102, 2277–2282 (2005)

    Article  Google Scholar 

  24. Wang, Y., Cao, X.: Global classical solutions of a 3D chemotaxis-Stokes system with rotation. Discrete Contin. Dyn. Syst. B, 20, 3235–3254 (2015)

    Article  MathSciNet  Google Scholar 

  25. Wang, Y.: Global solvability and eventual smoothness in a chemotaxis-fluid system with weak logistic-type degradation. Math. Models Methods Appl. Sci., 30, 1217–1252 (2020)

    Article  MathSciNet  Google Scholar 

  26. Wang, Y., Winkler, M., Xiang, Z.: The small-convection limit in a two-dimensional chemotaxis-Navier—Stokes system. Math. Z., 289, 71–108 (2018)

    Article  MathSciNet  Google Scholar 

  27. Wang, Y., Winkler, M., Xiang, Z.: Local energy estimates and global solvability in a three-dimensional chemotaxis-fluid system with prescribed signal on the boundary. Comm. Partial Differential Equations, 46(6), 1058–1091 (2021)

    Article  MathSciNet  Google Scholar 

  28. Winkler, M.: Global large-data solutions in a chemotaxis-(Navier-)Stokes system modeling cellular swimming in fluid drops. Comm. Partial Differential Equations, 37, 319–351 (2012)

    Article  MathSciNet  Google Scholar 

  29. Winkler, M.: Stabilization in a two-dimensional chemotaxis-Navier—Stokes system. Arch. Ration. Mech. Anal., 211(2), 455–487 (2014)

    Article  MathSciNet  Google Scholar 

  30. Winkler, M.: Global weak solutions in a three-dimensional chemotaxis-Navier—Stokes system. Ann. Inst. Henri Poincaré Anal. Non Linéaire, 33, 1329–1352 (2016)

    Article  MathSciNet  Google Scholar 

  31. Winkler, M.: How far do chemotaxis-driven forces influence regularity in the Navier—Stokes system? Trans. Amer. Math. Soc., 369, 3067–3125 (2017)

    Article  MathSciNet  Google Scholar 

  32. Winkler, M.: Boundedness and large time behavior in a three-dimensional chemotaxis-Stokes system with nonlinear diffusion and general sensitivity. Calc. Var. Partial Differential Eq., 54, 3789–3828 (2016)

    Article  MathSciNet  Google Scholar 

  33. Winkler, M.: Global existence and stabilization in a degenerate chemotaxis-Stokes system with mildly strong diffusion enhancement. J. Differential Eq., 264, 6109–6151 (2018)

    Article  MathSciNet  Google Scholar 

  34. Winkler, M.: A three-dimensional Keller—Segel—Navier—Stokes system with logistic source: Global weak solutions and asymptotic stabilization. Journal of Functional Analysis, 276, 1339–1401 (2019)

    Article  MathSciNet  Google Scholar 

  35. Winkler, M.: Small-mass solutions in the two-dimensional Keller—Segel system coupled to the Navier—Stokes equations. SIAM J. Math. Anal., 52, 2041–2080 (2020)

    Article  MathSciNet  Google Scholar 

  36. Winkler, M.: Does Leray’s structure theorem withstand buoyancy-driven chemotaxis-fluid interaction? J. Eur. Math. Soc., to appear

  37. Wu, C., Xiang, Z.: Asymptotic dynamics on a chemotaxis-Navier—Stokes system with nonlinear diffusion and inhomogeneous boundary conditions. Math. Models Methods Appl. Sci., 30, 1325–1374 (2020)

    Article  MathSciNet  Google Scholar 

  38. Zhang, Q., Zheng, X.: Global well-posedness for the two-dimensional incompressible chemotaxis-Navier—Stokes equations. SIAM J. Math. Anal., 46, 3078–3105 (2014)

    Article  MathSciNet  Google Scholar 

  39. Zhang, Q., Li, Y.: Convergence rates of solutions for a two-dimensional chemotaxis-Navier—Stokes system. Discrete Contin. Dyn. Syst. B, 20, 2751–2759 (2015)

    Article  MathSciNet  Google Scholar 

  40. Zhang, Q., Li, Y.: Global weak solutions for the three-dimensional chemotaxis-Navier—Stokes system with nonlinear diffusion. J. Differential Equations, 259, 3730–3654 (2015)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

The authors are very grateful to the referees for their helpful suggestions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yu Lan Wang.

Additional information

Y. Wang was supported by the Sichuan Science and Technology program (Grant No. 2021ZYD0008) and Sichuan Youth Science and Technology Foundation (Grant No. 2021JDTD0024). M. Winkler acknowledges support of the Deutsche Forschungsgemeinschaft in the context of the project Emergence of structures and advantages in cross-diffusion systems (Project No. 411007140, GZ: WI 3707/5-1). Z. Xiang was supported by the NNSF of China (Grant Nos. 11971093, 11771045), the Applied Fundamental Research Program of Sichuan Province (Grant No. 2020YJ0264), and the Fundamental Research Funds for the Central Universities (Grant No. ZYGX2019J096)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, Y.L., Winkler, M. & Xiang, Z.Y. A Smallness Condition Ensuring Boundedness in a Two-dimensional Chemotaxis-Navier—Stokes System involving Dirichlet Boundary Conditions for the Signal. Acta. Math. Sin.-English Ser. 38, 985–1001 (2022). https://doi.org/10.1007/s10114-022-1093-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10114-022-1093-7

Keywords

MR(2010) Subject Classification

Navigation