Skip to main content

Advertisement

Log in

Chance-constrained set covering with Wasserstein ambiguity

  • Full Length Paper
  • Series A
  • Published:
Mathematical Programming Submit manuscript

Abstract

We study a generalized distributionally robust chance-constrained set covering problem (DRC) with a Wasserstein ambiguity set, where both decisions and uncertainty are binary-valued. We establish the NP-hardness of DRC and recast it as a two-stage stochastic program, which facilitates decomposition algorithms. Furthermore, we derive two families of valid inequalities. The first family targets the hypograph of a “shifted” submodular function, which is associated with each scenario of the two-stage reformulation. We show that the valid inequalities give a complete description of the convex hull of the hypograph. The second family mixes inequalities across multiple scenarios and gains further strength via lifting. Our numerical experiments demonstrate the out-of-sample performance of the DRC model and the effectiveness of our proposed reformulation and valid inequalities.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Ahmed, S., Atamtürk, A.: Maximizing a class of submodular utility functions. Math. Program. 128(1–2), 149–169 (2009)

    MathSciNet  MATH  Google Scholar 

  2. Ahmed, S., Papageorgiou, D.J.: Probabilistic set covering with correlations. In: Operations Research 61.2, pp. 438–452 (2013)

  3. Atamtürk, A., Narayanan, V.: Polymatroids and mean-risk minimization in discrete optimization. Oper. Res. Lett. 36(5), 618–622 (2008)

    MathSciNet  MATH  Google Scholar 

  4. Ben-Tal, A., El Ghaoui, L., Nemirovski, A.: Robust Optimization, vol. 28. Princeton University Press, Princeton (2009)

    MATH  Google Scholar 

  5. Beraldi, P., Bruni, M.E.: An exact approach for solving integer problems under probabilistic constraints with random technology matrix. Ann. Oper. Res. 177(1), 127–137 (2009)

    MathSciNet  MATH  Google Scholar 

  6. Beraldi, P., Ruszczynski, A.: The probabilistic set-covering problem. Oper. Res. 50(6), 956–967 (2002)

    MathSciNet  MATH  Google Scholar 

  7. Blanchet, J., Murthy, K.R.A.: Quantifying distributional model risk via optimal transport. Math. Oper. Res. 44(2), 565–600 (2019)

    MathSciNet  MATH  Google Scholar 

  8. Bramel, J., Simchi-Levi, D.: On the effectiveness of set covering formulations for the vehicle routing problem with time windows. Oper. Res. 45(2), 295–301 (1997)

    MathSciNet  MATH  Google Scholar 

  9. Calafiore, G.C., El Ghaoui, L.: On distributionally robust chance-constrained linear programs. J. Optim. Theory Appl. 130(1), 1–22 (2006)

    MathSciNet  MATH  Google Scholar 

  10. Calafiore, G., Campi, M.: Uncertain convex programs: randomized solutions and confidence levels. Math. Program. 102(1), 25–46 (2004)

    MathSciNet  MATH  Google Scholar 

  11. Charnes, A., Cooper, W.W., Symonds, G.H.: Cost horizons and certainty equivalents: an approach to stochastic programming of heating oil. Manag. Sci. 4(3), 235–263 (1958)

    Google Scholar 

  12. Chen, A., Yang, C.: Stochastic transportation network design problem with spatial equity constraint. Transp. Res. Rec. 1882(1), 97–104 (2004)

    Google Scholar 

  13. Chen, Z., Kuhn, D., Wiesemann, W.: Data-Driven Chance Constrained Programs Over Wasserstein Balls. arXiv:1809.00210 (2018)

  14. Duan, C., Fang, W., Jiang, L., Yao, L., Liu, J.: distributionally robust chance-constrained approximate ac-opf with wasserstein metric. IEEE Trans. Power Syst. 33(5), 4924–4936 (2018)

    Google Scholar 

  15. El Ghaoui, L., Oks, M., Oustry, F.: Worst-case value-at-risk and robust portfolio optimization: a conic programming approach. Oper. Res. 51(4), 543–556 (2003)

    MathSciNet  MATH  Google Scholar 

  16. Fischetti, M., Monaci, M.: Cutting plane versus compact formulations for uncertain (integer) linear programs. Math. Program. Comput. 4(3), 239–273 (2012)

    MathSciNet  MATH  Google Scholar 

  17. Fournier, N., Guillin, A.: On the rate of convergence in Wasserstein distance of the empirical measure. Probab. Theory Relat. Fields 162(3–4), 707–738 (2014)

    MathSciNet  MATH  Google Scholar 

  18. Gibbs, A.L., Su, F.E.: On choosing and bounding probability metrics. Int. Stat. Rev. 70(3), 419–435 (2002)

    MATH  Google Scholar 

  19. Gu, Z., Nemhauser, G.L., Savelsbergh, M.W.: Sequence independent lifting in mixed integer programming. J. Combin. Optim. 4(1), 109–129 (2000)

    MathSciNet  MATH  Google Scholar 

  20. Gunawardane, G.: Dynamic versions of set covering type public facility location problems. Eur. J. Oper. Res. 10(2), 190–195 (1982)

    MATH  Google Scholar 

  21. Günlük, O., Pochet, Y.: Mixing mixed-integer inequalities. Math. Program. 90(3), 429–457 (2001)

    MathSciNet  MATH  Google Scholar 

  22. Hanasusanto, G.A., Roitch, V., Kuhn, D., Wiesemann, W.: A Distributionally robust perspective on uncertainty quantification and chance constrained programming. Math. Program. 151(1), 35–62 (2015)

    MathSciNet  MATH  Google Scholar 

  23. Hanasusanto, G.A., Roitch, V., Kuhn, D., Wiesemann, W.: Ambiguous joint chance constraints under mean and dispersion information. Oper. Res. 65(3), 751–767 (2017)

    MathSciNet  MATH  Google Scholar 

  24. Ho-Nguyen, N., Kılınç-Karzan, F., Küçükyavuz, S., Lee, D.: Distributionally Robust Chance- Constrained Programs With Right-Hand Side Uncertainty Under Wasserstein Ambiguity. Math. Program. Forthcoming (2021)

  25. Ho-Nguyen, N., Kılınç-Karzan, F., Küçükyavuz, S., Lee, D.: Strong Formulations for Distributionally Robust Chance-Constrained Programs with Left-Hand Side Uncertainty under Wasserstein Ambiguity. arXiv:2007.06750 (2020)

  26. Hsiung, K.-L., Kim, S.-J., Boyd, S.: Power control in lognormal fading wireless channels with uptime probability specifications via robust geometric programming. In: Proceedings of the 2005, American Control Conference, 2005, pp. 3955–3959. IEEE (2005)

  27. Ji, R., Lejeune, M.: Data-driven distributionally robust chance-constrained optimization with Wasserstein metric. SSRN Electron. J. (2018)

  28. Jiang, R., Guan, Y.: Data-driven chance constrained stochastic program. Math. Program. 158(1–2), 291–327 (2015)

    MathSciNet  MATH  Google Scholar 

  29. Küçükyavuz, S.: On mixing sets arising in chance-constrained programming. Math. Program. 132(1–2), 31–56 (2012)

    MathSciNet  MATH  Google Scholar 

  30. Li, B., Jiang, R., Mathieu, J.L.: Ambiguous risk constraints with moment and unimodality information. Math. Program. 173(1–2), 151–192 (2019)

    MathSciNet  MATH  Google Scholar 

  31. Lovász, L.: Submodular functions and convexity. In: Mathematical Programming The State of the Art, pp. 235–257 (1983)

  32. Luedtke, J.: A branch-and-cut decomposition algorithm for solving chance-constrained mathematical programs with finite support. Math. Program. 146(1–2), 219–244 (2014)

    MathSciNet  MATH  Google Scholar 

  33. Luedtke, J., Ahmed, S.: A sample approximation approach for optimization with probabilistic constraints. SIAM J. Optim. 19(2), 674–699 (2008)

    MathSciNet  MATH  Google Scholar 

  34. Miller, B.L., Wagner, H.M.: Chance constrained programming with joint constraints. Oper. Res. 13(6), 930–945 (1965)

    MATH  Google Scholar 

  35. Miranda, P.A., Garrido, R.A.: A Simultaneous inventory control and facility location model with stochastic capacity constraints. Netw. Spat. Econ. 6(1), 39–53 (2006)

    MathSciNet  MATH  Google Scholar 

  36. Mohajerin Esfahani, P., Kuhn, D.: Data-driven distributionally robust optimization using the Wasserstein metric: performance guarantees and tractable reformulations. Math. Program. 171(1), 115–166 (2018)

    MathSciNet  MATH  Google Scholar 

  37. Nemirovski, A., Shapiro, A.: Convex approximations of chance constrained programs. SIAM J. Optim. 17(4), 969–996 (2007)

    MathSciNet  MATH  Google Scholar 

  38. Prékopa, A.: On probabilistic constrained programming. In: Proceedings of the Princeton Symposium on Mathematical Programming. Vol. 113, p. 138. Princeton (1970)

  39. Prékopa, A.: Dual method for the solution of a one-stage stochastic programming problem with random RHS obeying a discrete probability distribution. In: ZOR Zeitschrift für Operations Research Methods and Models of Operations Research, Vol. 34.6, pp. 441–461 (1990)

  40. Rawls, C.G., Turnquist, M.A.: Pre-positioning of emergency supplies for disaster response. Transp. Res. Part B Methodol. 44(4), 521–534 (2010)

    Google Scholar 

  41. Rockafellar, R.T., Uryasev, S.: Optimization of conditional value-at-risk. J. Risk (1999)

  42. Saxena, A., Goyal, V., Lejeune, M.A.: MIP reformulations of the probabilistic set covering problem. Math. Program. 121(1), 1–31 (2010)

    MathSciNet  MATH  Google Scholar 

  43. Schrijver, A.: Combinatorial Optimization: Polyhedra and Efficiency, vol. 24. Springer, Berlin (2003)

    MATH  Google Scholar 

  44. Shehadeh, K.S., Tucker, E.L.: A Distributionally Robust Optimization Approach for Location and Inventory Prepositioning of Disaster Relief Supplies. arXiv:2012.05387 [math.OC] (2020)

  45. Smith, B.M., Wren, A.: A bus crew scheduling system using a set covering formulation. Transp. Res. Part A General 2, 97–108 (1988)

    Google Scholar 

  46. Song, Y., Luedtke, J.R.: Branch-and-cut approaches for chance-constrained formulations of reliable network design problems. Math. Program. Comput. 5(4), 397–432 (2013)

    MathSciNet  MATH  Google Scholar 

  47. Song, Y., Luedtke, J.R., Küçükyavuz, S.: Chance-constrained binary packing problems. INFORMS J. Comput. 26(4), 735–747 (2014)

    MathSciNet  MATH  Google Scholar 

  48. Topkis, D.M.: Minimizing a submodular function on a lattice. Oper. Res. 26(2), 305–321 (1978)

    MathSciNet  MATH  Google Scholar 

  49. Vandenberghe, L., Boyd, S., Comanor, K.: Generalized Chebyshev bounds via semidefinite programming. SIAM Rev. 49(1), 52–64 (2007)

    MathSciNet  MATH  Google Scholar 

  50. Vasko, F.J., Wolf, F.E., Stott, K.L., Jr.: A set covering approach to metallurgical grade assignment. Eur. J. Oper. Res. 38(1), 27–34 (1989)

    MathSciNet  Google Scholar 

  51. Velasquez, G.A., Mayorga, M.E., Özaltın, O.Y.: Prepositioning disaster relief supplies using robust optimization. IISE Trans. 52(10), 1122–1140 (2020). https://doi.org/10.1080/24725854.2020.1725692

    Article  Google Scholar 

  52. Wang, S., Li, J., Mehrotra, S.: A solution approach to distributionally robust chance- constrained assignment. Optim. Online Preprints (2019)

  53. Wolsey, L.A., Nemhauser, G.L.: Integer and Combinatorial Optimization. Wiley, New York (2014)

    MATH  Google Scholar 

  54. Wu, H., Küçükyavuz, S.: Probabilistic partial set covering with an oracle for chance constraints. SIAM J. Optim. 29(1), 690–718 (2019)

    MathSciNet  MATH  Google Scholar 

  55. Xie, W.: On distributionally robust chance constrained programs with wasserstein distance. In: Mathematical Programming (2019)

  56. Xie, W., Ahmed, S.: Bicriteria approximation of chance-constrained covering problems. Oper. Res. (2020)

  57. Xie, W., Ahmed, S.: On deterministic reformulations of distributionally robust joint chance constrained optimization problems. SIAM J. Optim. 28 (2016)

  58. Xu, H., Caramanis, C., Mannor, S.: Optimization under probabilistic envelope constraints. Oper. Res. 60(3), 682–699 (2012)

    MathSciNet  MATH  Google Scholar 

  59. Yang, I.: Wasserstein Distributionally Robust Stochastic Control: A Data-Driven Approach (2018). arXiv: 1812.09808 [math.OC]

  60. Yang, J., Leung, J.Y.-T.: A generalization of the weighted set covering problem. Naval Res. Logist 52(2), 142–149 (2005)

    MathSciNet  MATH  Google Scholar 

  61. Yang, W., Xu, H.: Distributionally robust chance constraints for non-linear uncertainties. Math. Program. 155(1–2), 231–265 (2014)

    MathSciNet  MATH  Google Scholar 

  62. Zhang, H., Li, P.: Probabilistic analysis for optimal power flow under uncertainty. IET Gener. Transm. Distrib. 4, 553–561 (2010)

    Google Scholar 

  63. Zymler, S., Kuhn, D., Rustem, B.: Distributionally robust joint chance constraints with second-order moment information. Math. Program. 137(1–2), 167–198 (2011)

    MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ruiwei Jiang.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Ruiwei Jiang was supported in part by the National Science Foundation ECCS-1845980.

Appendix A: Proof of Proposition 3

Appendix A: Proof of Proposition 3

Proof

Consider a graph \(\mathcal {G} := (\mathcal {V}, \mathcal {E})\) with vertex set \(\mathcal {V}\) and edge set \(\mathcal {E}\), on which the classic NP-hard vertex cover problem has the following binary linear formulation:

$$\begin{aligned} \mathop {\text {min}}~~&\sum _{u \in \mathcal {V}} x_u, \\ \mathop {\text {s.t.}}~~&x^{\top }\xi _{u, v} \ge 1, \forall (u, v) \in \mathcal {E}, \\&x_u \in \{0, 1\}, \forall u \in \mathcal {V}, \end{aligned}$$
(VC)

where binary variables \(x_u\) indicate whether node \(u \in \mathcal {V}\) is part of the vertex cover and \(\xi _{u,v}\) is a binary vector with two nonzero entries: \(\xi _{u,v} = e_u + e_v\) and \(x^{\top }\xi _{u,v} = x_u + x_v\) for all \(x \in \{0, 1\}^{|\mathcal {V}|}\). In particular, a vertex cover \(x\) can cover every edge twice if and only if all nodes are in the cover, i.e. , \(x = \mathbf {1}\). We provide a polynomial reduction from (VC) to the following instance of (8) to finish the proof:

$$\begin{aligned} \mathop {\text {min}}_{x \in \{0, 1\}^{|\mathcal {V}'|}} ~~&L(x) := \frac{1}{|\mathcal {V}'|} \sum _{u \in \mathcal {V}} x_u + \frac{1}{|\mathcal {V}'|} x_{w'} + x_{w} - \mathop {\text {min}}_{(u, v) \in \mathcal {E}'} \left( x^{\top } \xi _{u,v} \right) ^{1/p}, \end{aligned}$$
(29)

where we add two new nodes \(w\) and \(w'\) and augment the graph \(\mathcal {G}\) to obtain \(\mathcal {G}' := (\mathcal {V}', \mathcal {E}')\), \(\mathcal {V}' := \mathcal {V} \cup \Big \{w, w'\Big \}\), and \(\mathcal {E}' := \mathcal {E} \cup \Big \{(w, w')\Big \}\). Since the optimal value of (VC) is bounded above by \(|\mathcal {V}|\), we are only interested in whether there is a vertex cover of size less than or equal to \(K \in \mathbb {Z}_+, 1 \le K \le |\mathcal {V}| - 1\). On the one hand, suppose that there exists a vertex cover \(x\) with size less than or equal to \(K\), then together with \(x_{w'} := 1\) and \(x_w := 0\), \(x^{\prime } := (x, x_{w'}, x_w)\) form a feasible solution to (29) with objective value less than or equal to \((K + 1) / |\mathcal {V}'| - 1\) because

$$\begin{aligned} L(x^{\prime }) = \frac{1}{|\mathcal {V}'|} \sum _{u \in \mathcal {V}} x_u + \frac{1}{|\mathcal {V}'|} x_{w'} + x_{w} - \mathop {\text {min}}_{(u, v) \in \mathcal {E}'} \left( x^{\top } \xi _{u,v}\right) ^{1/p} \le \frac{1}{|\mathcal {V}'|}(K + 1) - 1. \end{aligned}$$

On the other hand, suppose that there is a \(y := (y_0, y_{w'}, y_{w}) \in \{0, 1\}^{|\mathcal {V}'|}\) such that \(L(y) \le (K + 1) / |\mathcal {V}'| - 1\). We discuss the following three cases, with regard to the coverage number \(C(y) := \mathop {\text {min}}_{(u, v) \in \mathcal {E}'} \left( y^{\top } \xi _{u, v}\right) ^{1/p}\), to show that there exists a vertex cover with size at most K.

  1. 1.

    \(C(y) = 0\) is impossible because

    $$\begin{aligned} C(y) = \mathop {\text {min}}_{(u, v) \in \mathcal {E}'} \left( y^{\top }\xi _{u, v} \right) ^{1/p}&\ge \frac{1}{|\mathcal {V}'|} \sum _{u \in \mathcal {V}} y_u + \frac{1}{|\mathcal {V}'|} y_{w'} + y_{w} - \frac{1}{|\mathcal {V}'|} (K + 1) + 1 \\&\ge -\frac{1}{|\mathcal {V}'|} (K + 1) + 1 \ge 1 - \frac{|\mathcal {V}| + 1}{|\mathcal {V}| + 2} > 0. \end{aligned}$$
  2. 2.

    \(C(y) = 1\): suppose that \(y_w = 1\) and \(y_{w'}\) equals zero or one. Then an alternative solution \(y' := (y_0, y'_{w'}, y'_w)\) with \(y'_{w'} = 1\) and \(y'_w = 0\) to formulation (29) satisfies:

    $$\begin{aligned} C(y')&= \mathop {\text {min}}\Big \{ \mathop {\text {min}}_{(u, v) \in \mathcal {E}} \left( y_0^{\top }\xi _{u, v} \right) ^{1/p}, (y'_{w'} + y'_{w})^{1/p} \Big \} = 1 \quad \text {and} \\ L(y')&\le L(y) \le \frac{1}{|\mathcal {V}'|} (K + 1) - 1. \end{aligned}$$

    It follows that \(y_0\) is a vertex cover of \(\mathcal {G}\), and we may assume that \(y_{w'} = 1, y_w = 0\) in formulation (29) without loss of optimality. Hence,

    $$\begin{aligned}&L(y) = \frac{1}{|\mathcal {V}'|} \sum _{u \in \mathcal {V}} (y_0)_u + \frac{1}{|\mathcal {V}'|} y_{w'} + y_{w} - C(y) = \frac{1}{|\mathcal {V}'|} \left( \sum _{u \in \mathcal {V}} (y_0)_u + 1 \right) - 1\\&\quad \le \frac{1}{|\mathcal {V}'|} (K + 1) - 1, \end{aligned}$$

    which implies that \(y_0\) is a vertex cover of size at most \(K\).

  3. 3.

    \(C(y) = 2^{1/p}\) is also impossible. Indeed, since \(C(y) = 2^{1/p}\), every edge of \(\mathcal {G}'\) is covered twice, implying that \(y_{w'} = w_{w} = (y_0)_u = 1\) for all \(u \in \mathcal {V}\). Then,

    $$\begin{aligned} L(y) = \frac{1}{|\mathcal {V}'|} ( |\mathcal {V}| + 1) + 1 - 2^{1/p} \le \frac{1}{|\mathcal {V}'|} (K + 1) - 1 \le \frac{1}{|\mathcal {V}'|} |\mathcal {V}| - 1. \end{aligned}$$

    Simplifying the two ends of the above inequalities gives us \(2 + |\mathcal {V}'|^{-1} \le 2^{1/p}\), which is impossible for \(p \ge 1\). Therefore, \(C(y)\) cannot be \(2^{1/p}\).

To sum up, if there is a feasible solution y to formulation (29) with \(L(y) \le (K + 1) / |\mathcal {V}'| - 1\), then there is a vertex cover of \(\mathcal {G}\) with size at most \(K\). \(\square \)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shen, H., Jiang, R. Chance-constrained set covering with Wasserstein ambiguity. Math. Program. 198, 621–674 (2023). https://doi.org/10.1007/s10107-022-01788-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10107-022-01788-6

Keywords

Mathematics Subject Classification

Navigation