Skip to main content
Log in

Enhancing nerve regeneration in infraorbital nerve injury rat model: effects of vitamin B complex and photobiomodulation

  • Original Article
  • Published:
Lasers in Medical Science Aims and scope Submit manuscript

Abstract

Orofacial nerve injuries may result in temporary or long-term loss of sensory function and decreased quality of life in patients. B vitamins are required for DNA synthesis and the repair and maintenance of phospholipids. In particular, vitamins B1, B6, and B12 are essential for neuronal function. Deficiency in vitamin B complex (VBC) has been linked to increased oxidative stress, inflammation and demyelination. Photobiomodulation (PBM) has antioxidant activity and is neuroprotective. In addition, a growing literature attests to the positive effects of PBM on nerve repair. To assess the effect of PBM and VBC on regenerative process we evaluated the expression of brain-derived neurotrophic factor (BDNF), nerve growth factor (NGF), myelin basic protein (MBP), laminin and neurofilaments (NFs) using Western blotting to identify regenerative pattern after chronic constriction injury of the infraorbital nerve (CCI IoN) treated by PBM, VBC or its combination. After CCI IoN, the rats were divided into six groups naive, sham, injured (CCI IoN), treated with photobiomodulation (904 nm, 6.23 J/cm2, CCI IoN + PBM), treated with VBC (containing B1, B6 and B12) 5 times, CCI IoN + VBC) and treated with PBM and VBC (CCI IoN + VBC + PBM). The treatments could revert low expression of BDNF, MBP and laminin. Also reverted the higher expression of neurofilaments and enhanced expression of NGF. PBM and VBC could accelerate injured infraorbital nerve repair in rats through reducing the expression of neurofilaments, increasing the expression of BDNF, laminin and MBP and overexpressing NGF. These data support the notion that the use of PBM and VBC may help in the treatment of nerve injuries. This finding has potential clinical applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data availability

Not applicable.

References

  1. do Carmo Oliveira TG et al (2021) TNF-mimetic peptide mixed with fibrin glue improves peripheral nerve regeneration. Brain Res Bull 174:53–62

    Article  PubMed  Google Scholar 

  2. Menorca RM, Fussell TS, Elfar JC (2013) Nerve physiology: mechanisms of injury and recovery. Hand Clin 29(3):317–330

    Article  PubMed  PubMed Central  Google Scholar 

  3. Campbell WW (2008) Evaluation and management of peripheral nerve injury. Clin Neurophysiol 119(9):1951–1965

    Article  PubMed  Google Scholar 

  4. Sulaiman W, Gordon T (2013) Neurobiology of peripheral nerve injury, regeneration, and functional recovery: from bench top research to bedside application. Ochsner J 13(1):100–108

    PubMed  PubMed Central  Google Scholar 

  5. Zarinfard G et al (2016) Effect of laminin on neurotrophic factors expression in schwann-like cells induced from human adipose-derived stem cells in vitro. J Mol Neurosci 60(4):465–473

    Article  CAS  PubMed  Google Scholar 

  6. Mirsky R et al (2002) Schwann cells as regulators of nerve development. J Physiol Paris 96(1–2):17–24

    Article  CAS  PubMed  Google Scholar 

  7. Madduri S, Gander B (2010) Schwann cell delivery of neurotrophic factors for peripheral nerve regeneration. J Peripher Nerv Syst 15(2):93–103

    Article  CAS  PubMed  Google Scholar 

  8. Nocera G, Jacob C (2020) Mechanisms of Schwann cell plasticity involved in peripheral nerve repair after injury. Cell Mol Life Sci 77(20):3977–3989

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Ananthan S, Benoliel R (2020) Chronic orofacial pain. J Neural Transm (Vienna) 127(4):575–588

    Article  PubMed  Google Scholar 

  10. Jacquin MF, Chiaia NL, Rhoades RW (1990) Trigeminal projections to contralateral dorsal horn: central extent, peripheral origins, and plasticity. Somatosens Mot Res 7(2):153–183

    Article  CAS  PubMed  Google Scholar 

  11. Reyes-García G, Medina-Santillán R, Flores-Murrieta FJ, Caram-Salas NL, Granados-Soto V (2006) Analgesic effects of B vitamins: A review. Current Topics in Pharmacology 10(1):1–31

  12. Gibson GE, Zhang H (2002) Interactions of oxidative stress with thiamine homeostasis promote neurodegeneration. Neurochem Int 40(6):493–504

    Article  CAS  PubMed  Google Scholar 

  13. Yang TT, Wang SJ (2009) Pyridoxine inhibits depolarization-evoked glutamate release in nerve terminals from rat cerebral cortex: a possible neuroprotective mechanism? J Pharmacol Exp Ther 331(1):244–254

    Article  CAS  PubMed  Google Scholar 

  14. Wu F et al (2019) Vitamin B(12) enhances nerve repair and improves functional recovery after traumatic brain injury by inhibiting er stress-induced neuron injury. Front Pharmacol 10:406

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Suzuki K et al (2017) Electrospun nanofiber sheets incorporating methylcobalamin promote nerve regeneration and functional recovery in a rat sciatic nerve crush injury model. Acta Biomater 53:250–259

    Article  CAS  PubMed  Google Scholar 

  16. Sun H et al (2012) Dexamethasone and vitamin B(12) synergistically promote peripheral nerve regeneration in rats by upregulating the expression of brain-derived neurotrophic factor. Arch Med Sci 8(5):924–930

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Yazdani SO et al (2012) Effects of low level laser therapy on proliferation and neurotrophic factor gene expression of human schwann cells in vitro. J Photochem Photobiol B 107:9–13

    Article  CAS  PubMed  Google Scholar 

  18. Ziago EK et al (2017) Analysis of the variation in low-level laser energy density on the crushed sciatic nerves of rats: a morphological, quantitative, and morphometric study. Lasers Med Sci 32(2):369–378

    Article  PubMed  Google Scholar 

  19. Gigo-Benato D et al (2010) Effects of 660 and 780 nm low-level laser therapy on neuromuscular recovery after crush injury in rat sciatic nerve. Lasers Surg Med 42(9):673–682

    Article  PubMed  Google Scholar 

  20. Serafim KG et al (2012) Effects of 940 nm light-emitting diode (led) on sciatic nerve regeneration in rats. Lasers Med Sci 27(1):113–119

    Article  PubMed  Google Scholar 

  21. Alcântara CC et al (2013) Effect of low-level laser therapy (LLLT) on acute neural recovery and inflammation-related gene expression after crush injury in rat sciatic nerve. Lasers Surg Med 45(4):246–252

    Article  PubMed  Google Scholar 

  22. Zimmermann M (1983) Ethical guidelines for investigations of experimental pain in conscious animals. Pain 16(2):109–110

    Article  PubMed  Google Scholar 

  23. Chichorro JG et al (2006) Orofacial cold hyperalgesia due to infraorbital nerve constriction injury in rats: reversal by endothelin receptor antagonists but not non-steroidal anti-inflammatory drugs. Pain 123(1–2):64–74

    Article  CAS  PubMed  Google Scholar 

  24. de Oliveira Martins D et al (2013) Laser therapy and pain-related behavior after injury of the inferior alveolar nerve: possible involvement of neurotrophins. J Neurotrauma 30(6):480–486

    Article  PubMed  PubMed Central  Google Scholar 

  25. Martins DO, Dos Santos FM, Ciena AP, Watanabe IS, de Britto LRG, Lemos JBD, Chacur M (2017) Neuropeptide expression and morphometric differences in crushed alveolar inferior nerve of rats: Effects of photobiomodulation. Lasers Med Sci 32(4):833–840. https://doi.org/10.1007/s10103-017-2181-2

  26. Martins DO et al (2017) Neurochemical effects of photobiostimulation in the trigeminal ganglion after inferior alveolar nerve injury. J Biol Regul Homeost Agents 31(1):147–152

    CAS  PubMed  Google Scholar 

  27. de Freitas Rodrigues A et al (2020) The effectiveness of photobiomodulation in the management of temporomandibular pain sensitivity in rats: behavioral and neurochemical effects. Lasers Med Sci 35(2):447–453

    Article  PubMed  Google Scholar 

  28. Kopruszinski CM, Reis RC, Chichorro JG (2012) B vitamins relieve neuropathic pain behaviors induced by infraorbital nerve constriction in rats. Life Sci 91(23–24):1187–1195

    Article  CAS  PubMed  Google Scholar 

  29. Kopruszinski CM et al (2015) Vitamin B complex attenuated heat hyperalgesia following infraorbital nerve constriction in rats and reduced capsaicin in vivo and in vitro effects. Eur J Pharmacol 762:326–332

    Article  CAS  PubMed  Google Scholar 

  30. Bradford MM (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72:248–254

    Article  CAS  PubMed  Google Scholar 

  31. Snedecor GW, Sokal RR, Rohlf FJ (1946) Statistical methods Biometry. 4 ed.Ames, ed. W.H. Freeman & Co., New York: Owa State University Press. p.859

  32. Scalabrino G, Peracchi M (2006) New insights into the pathophysiology of cobalamin deficiency. Trends Mol Med 12(6):247–254

    Article  CAS  PubMed  Google Scholar 

  33. Fujii A, Matsumoto H, Yamamoto H (1996) Effect of vitamin B complex on neurotransmission and neurite outgrowth. Gen Pharmacol 27(6):995–1000

    Article  CAS  PubMed  Google Scholar 

  34. Marques DP, Chacur M, Martins DO (2023) Photobiomodulation and vitamin B treatment alleviate both thermal and mechanical orofacial pain in rats. Photochem Photobiol Sci 22(10):2315–2327. https://doi.org/10.1007/s43630-023-00452-y

  35. Martins DO, Marques DP, Venega RAG, Chacur M (2020) Photobiomodulation and B vitamins administration produces antinociception in an orofacial pain model through the modulation of glial cells and cytokines expression. Brain Behav Immun Health 2:100040. https://doi.org/10.1016/j.bbih.2020.100040

  36. Bonni A, Brunet A, West AE, Datta SR, Takasu MA, Greenberg ME (1999) Cell survival promoted by the Ras-MAPK signaling pathway by transcription-dependent and -independent mechanisms. Science 286(5443):1358–62. https://doi.org/10.1126/science.286.5443.1358

  37. Markus A, Zhong J, Snider WD (2002) Raf and akt mediate distinct aspects of sensory axon growth. Neuron 35(1):65–76. https://doi.org/10.1016/s0896-6273(02)00752-3

  38. Zhu D et al (2005) N-methyl-D-aspartate and TrkB receptors protect neurons against glutamate excitotoxicity through an extracellular signal-regulated kinase pathway. J Neurosci Res 80(1):104–113

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Aonurm-Helm A et al (2010) NCAM-mimetic, FGL peptide, restores disrupted fibroblast growth factor receptor (FGFR) phosphorylation and FGFR mediated signaling in neural cell adhesion molecule (NCAM)-deficient mice. Brain Res 1309:1–8

    Article  CAS  PubMed  Google Scholar 

  40. Hsieh YL et al (2012) Low-level laser therapy alleviates neuropathic pain and promotes function recovery in rats with chronic constriction injury: Possible involvements in hypoxia-inducible factor 1α (HIF-1α). J Comp Neurol 520(13):2903–2916

    Article  CAS  PubMed  Google Scholar 

  41. Gomes LE, Dalmarco EM, Andre ES (2012) The brain-derived neurotrophic factor, nerve growth factor, neurotrophin-3, and induced nitric oxide synthase expressions after low-level laser therapy in an axonotmesis experimental model. Photomed Laser Surg 30(11):642–647

    Article  CAS  PubMed  Google Scholar 

  42. Yu WM, Yu H, Chen ZL (2007) Laminins in peripheral nerve development and muscular dystrophy. Mol Neurobiol 35(3):288–297

    Article  CAS  PubMed  Google Scholar 

  43. Yu WM et al (2009) Laminin is required for Schwann cell morphogenesis. J Cell Sci 122(Pt 7):929–936

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Woodruff RH, Franklin RJ (1999) Demyelination and remyelination of the caudal cerebellar peduncle of adult rats following stereotaxic injections of lysolecithin, ethidium bromide, and complement/anti-galactocerebroside: a comparative study. Glia 25(3):216–228

    Article  CAS  PubMed  Google Scholar 

  45. Sim FJ, Hinks GL, Franklin RJ (2000) The re-expression of the homeodomain transcription factor Gtx during remyelination of experimentally induced demyelinating lesions in young and old rat brain. Neuroscience 100(1):131–139

    Article  CAS  PubMed  Google Scholar 

  46. Stangel M, Hartung HP (2002) Remyelinating strategies for the treatment of multiple sclerosis. Prog Neurobiol 68(5):361–376

    Article  CAS  PubMed  Google Scholar 

  47. Baumann N, Pham-Dinh D (2001) Biology of oligodendrocyte and myelin in the mammalian central nervous system. Physiol Rev 81(2):871–927

    Article  CAS  PubMed  Google Scholar 

  48. Yin Q et al (2001) Expression of Schwann cell-specific proteins and low-molecular-weight neurofilament protein during regeneration of sciatic nerve treated with neurotrophin-4. Neuroscience 105(3):779–783

    Article  CAS  PubMed  Google Scholar 

  49. Varejao AS et al (2004) Functional and morphological assessment of a standardized rat sciatic nerve crush injury with a non-serrated clamp. J Neurotrauma 21(11):1652–1670

    Article  PubMed  Google Scholar 

  50. Wong J, Oblinger MM (1987) Changes in neurofilament gene expression occur after axotomy of dorsal root ganglion neurons: an in situ hybridization study. Metab Brain Dis 2(4):291–303

    Article  CAS  PubMed  Google Scholar 

  51. Ananthakrishnan L, Gervasi C, Szaro BG (2008) Dynamic regulation of middle neurofilament RNA pools during optic nerve regeneration. Neuroscience 153(1):144–153

    Article  CAS  PubMed  Google Scholar 

  52. Wang H et al (2012) Neurofilament proteins in axonal regeneration and neurodegenerative diseases. Neural Regen Res 7(8):620–626

    CAS  PubMed  PubMed Central  Google Scholar 

  53. Dong MM, Yi TH (2010) Stem cell and peripheral nerve injury and repair. Facial Plast Surg 26(5):421–427

    Article  CAS  PubMed  Google Scholar 

  54. Sullivan R, Dailey T, Duncan K, Abel N, Borlongan CV (2016) Peripheral nerve injury: stem cell therapy and peripheral nerve transfer. Int J Mol Sci 17(12):2101. https://doi.org/10.3390/ijms17122101

  55. Janzadeh A et al (2020) The effect of chondroitinase ABC and photobiomodulation therapy on neuropathic pain after spinal cord injury in adult male rats. Physiol Behav 227:113141

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

Martins D.O., was the recipient of a FAPESP Postdoctoral Scholarship (2015/24256-0).

Funding

This study was financially supported by the Brazilian funding agency, Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP), Grant number—2015/24256–0; 2014/24533–0; 2017/05218–5, and by Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq), Grant number—157284/2017–4; 405853/2018–1. The funding agencies play no role in the design of the study, data collection, analysis, interpretation of the data, or in writing the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Daniel Oliveira Martins.

Ethics declarations

Ethical approval

The study was approved by the local committees on ethics on the use of animals (protocol number 3872071118), Universidade de São Paulo Instituto de Ciências Biomédicas, SP, Brazil.

Consent for publication

Not applicable.

Competing interests

The authors declare that they have no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 902 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Martins, D.O., Marques, D.P. & Chacur, M. Enhancing nerve regeneration in infraorbital nerve injury rat model: effects of vitamin B complex and photobiomodulation. Lasers Med Sci 39, 119 (2024). https://doi.org/10.1007/s10103-024-04067-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10103-024-04067-2

Keywords

Navigation