Skip to main content
Log in

Laminins in Peripheral Nerve Development and Muscular Dystrophy

  • Published:
Molecular Neurobiology Aims and scope Submit manuscript

Abstract

Laminins are extracellular matrix (ECM) proteins that play an important role in cellular function and tissue morphogenesis. In the peripheral nervous system (PNS), laminins are expressed in Schwann cells and participate in their development. Mutations in laminin subunits expressed in the PNS and in skeleton muscle may cause peripheral neuropathies and muscular dystrophy in both humans and mice. Recent studies using gene knockout technology, such as cell-type specific gene targeting techniques, revealed that laminins and their receptors mediate Schwann cell and axon interactions. Schwann cells with disrupted laminin expression exhibit impaired proliferation and differentiation and also undergo apoptosis. In this review, we focus on the potential molecular mechanisms by which laminins participate in the development of Schwann cells.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Colognato H, Yurchenco PD (2000) Form and function: the laminin family of heterotrimers. Dev Dyn 218:213–234

    Article  PubMed  CAS  Google Scholar 

  2. Grimpe B et al (2002) The critical role of basement membrane-independent laminin gamma 1 chain during axon regeneration in the CNS. J Neurosci 22:3144–3160

    PubMed  CAS  Google Scholar 

  3. Yin Y et al (2003) Expression of laminin chains by central neurons: analysis with gene and protein trapping techniques. Genesis 36:114–127

    Article  PubMed  CAS  Google Scholar 

  4. Hagg T, Muir D, Engvall E, Varon S, Manthorpe M (1989) Laminin-like antigen in rat CNS neurons: distribution and changes upon brain injury and nerve growth factor treatment. Neuron 3:721–732

    Article  PubMed  CAS  Google Scholar 

  5. Zhou FC (1990) Four patterns of laminin-immunoreactive structure in developing rat brain. Brain Res Dev Brain Res 55:191–201

    Article  PubMed  CAS  Google Scholar 

  6. Jucker M, Tian M, Ingram DK (1996) Laminins in the adult and aged brain. Mol Chem Neuropathol 28:209–218

    PubMed  CAS  Google Scholar 

  7. Hagg T, Portera-Cailliau C, Jucker M, Engvall E (1997) Laminins of the adult mammalian CNS; laminin-alpha2 (merosin M−) chain immunoreactivity is associated with neuronal processes. Brain Res 764:17–27

    Article  PubMed  CAS  Google Scholar 

  8. Chen ZL, Strickland S (1997) Neuronal death in the hippocampus is promoted by plasmin-catalyzed degradation of laminin. Cell 91:917–925

    Article  PubMed  CAS  Google Scholar 

  9. Tian M et al (1997) Laminin-alpha2 chain-like antigens in CNS dendritic spines. Brain Res 764:28–38

    Article  PubMed  CAS  Google Scholar 

  10. Nakagami Y, Abe K, Nishiyama N, Matsuki N (2000) Laminin degradation by plasmin regulates long-term potentiation. J Neurosci 20:2003–2010

    PubMed  CAS  Google Scholar 

  11. Indyk JA, Chen Z-L, Tsirka SE, Strickland S (2003) Laminin chain expression suggests that laminin-10 is a major isoform in the mouse hippocampus and is degraded by the tPA/plasmin system during excitotoxic injury. Neurosci 116:359–371

    Article  CAS  Google Scholar 

  12. Noakes PG, Gautam M, Mudd J, Sanes JR, Merlie JP (1995) Aberrant differentiation of neuromuscular junctions in mice lacking s-laminin/laminin beta 2. Nature 374:258–262

    Article  PubMed  CAS  Google Scholar 

  13. Patton BL, Chiu AY, Sanes JR (1998) Synaptic laminin prevents glial entry into the synaptic cleft. Nature 393:698–701

    Article  PubMed  CAS  Google Scholar 

  14. Patton BL et al (2001) Properly formed but improperly localized synaptic specializations in the absence of laminin alpha4. Nat Neurosci 4:597–604

    Article  PubMed  CAS  Google Scholar 

  15. Sanes JR, Lichtman JW (2001) Induction, assembly, maturation and maintenance of a postsynaptic apparatus. Nat Rev Neurosci 2:791–805

    Article  PubMed  CAS  Google Scholar 

  16. Doyu M et al (1993) Laminin A, B1, and B2 chain gene expression in transected and regenerating nerves: regulation by axonal signals. J Neurochem 60:543–551

    Article  PubMed  CAS  Google Scholar 

  17. Patton BL, Miner JH, Chiu AY, Sanes JR (1997) Distribution and function of laminins in the neuromuscular system of developing, adult, and mutant mice. J Cell Biol 139:1507–1521

    Article  PubMed  CAS  Google Scholar 

  18. Luckenbill-Edds L (1997) Laminin and the mechanism of neuronal outgrowth. Brain Res Brain Res Rev 23:1–27

    Article  PubMed  CAS  Google Scholar 

  19. Miner JH, Cunningham J, Sanes JR (1998) Roles for laminin in embryogenesis: exencephaly, syndactyly, and placentopathy in mice lacking the laminin alpha5 chain. J Cell Biol 143:1713–1723

    Article  PubMed  CAS  Google Scholar 

  20. Liesi P, Fried G, Stewart RR (2001) Neurons and glial cells of the embryonic human brain and spinal cord express multiple and distinct isoforms of laminin. J Neurosci Res 64:144–167

    Article  PubMed  CAS  Google Scholar 

  21. Murtomaki S et al (1992) Laminin and its neurite outgrowth-promoting domain in the brain in Alzheimer’s disease and Down’s syndrome patients. J Neurosci Res 32:261–273

    Article  PubMed  CAS  Google Scholar 

  22. Podratz JL, Rodriguez E, Windebank AJ (2001) Role of the extracellular matrix in myelination of peripheral nerve. Glia 35:35–40

    Article  PubMed  CAS  Google Scholar 

  23. Chen ZL, Strickland S (2003) Laminin gamma1 is critical for Schwann cell differentiation, axon myelination, and regeneration in the peripheral nerve. J Cell Biol 163:889–899

    Article  PubMed  CAS  Google Scholar 

  24. Yang D et al (2005) Coordinate control of axon defasciculation and myelination by laminin-2 and -8. J Cell Biol 168:655–666

    Article  PubMed  CAS  Google Scholar 

  25. Yu WM, Feltri ML, Wrabetz L, Strickland S, Chen ZL (2005) Schwann cell-specific ablation of laminin gamma1 causes apoptosis and prevents proliferation. J Neurosci 25:4463–4472

    Article  PubMed  CAS  Google Scholar 

  26. Miner JH, Yurchenco PD (2004) Laminin functions in tissue morphogenesis. Annu Rev Cell Dev Biol 20:255–284

    Article  PubMed  CAS  Google Scholar 

  27. Timpl R (1996) Macromolecular organization of basement membranes. Curr Opin Cell Biol 8:618–624

    Article  PubMed  CAS  Google Scholar 

  28. Yurchenco PD, Amenta PS, Patton BL (2004) Basement membrane assembly, stability and activities observed through a developmental lens. Matrix Biology 22:521–538

    Article  PubMed  CAS  Google Scholar 

  29. Henry MD, Campbell KP (1996) Dystroglycan: an extracellular matrix receptor linked to the cytoskeleton. Curr Opin Cell Biol 8:625–631

    Article  PubMed  CAS  Google Scholar 

  30. Schwartz MA (2001) Integrin signaling revisited. Trends Cell Biol 11:466–470

    Article  PubMed  CAS  Google Scholar 

  31. Occhi S et al (2005) Both laminin and Schwann cell dystroglycan are necessary for proper clustering of sodium channels at nodes of Ranvier. J Neurosci 25:9418–9427

    Article  PubMed  CAS  Google Scholar 

  32. Sunada Y, Bernier SM, Utani A, Yamada Y, Campbell KP (1995) Identification of a novel mutant transcript of laminin alpha 2 chain gene responsible for muscular dystrophy and dysmyelination in dy2J mice. Hum Mol Genet 4:1055–1061

    Article  PubMed  CAS  Google Scholar 

  33. Xu H, Wu XR, Wewer UM, Engvall E (1994) Murine muscular dystrophy caused by a mutation in the laminin alpha 2 (Lama2) gene. Nat Genet 8:297–302

    Article  PubMed  CAS  Google Scholar 

  34. Helbling-Leclerc A et al (1995) Mutations in the laminin alpha 2-chain gene (LAMA2) cause merosin-deficient congenital muscular dystrophy. Nat Genet 11:216–218

    Article  PubMed  CAS  Google Scholar 

  35. Bradley WG, Jenkison M (1973) Abnormalities of peripheral nerves in murine muscular dystrophy. J Neurol Sci 18:227–247

    Article  PubMed  CAS  Google Scholar 

  36. Madrid RE, Jaros E, Cullen MJ, Bradley WG (1975) Genetically determined defect of Schwann cell basement membrane in dystrophic mouse. Nature 257:319–321

    Article  PubMed  CAS  Google Scholar 

  37. Perkins CS, Bray GM, Aguayo AJ (1981) Ongoing block of Schwann cell differentiation and deployment in dystrophic mouse spinal roots. Brain Res 227:213–220

    PubMed  CAS  Google Scholar 

  38. Shorer Z, Philpot J, Muntoni F, Sewry C, Dubowitz V (1995) Demyelinating peripheral neuropathy in merosin-deficient congenital muscular dystrophy. J Child Neurol 10:472–475

    Article  PubMed  CAS  Google Scholar 

  39. Stirling CA (1975) Abnormalities in Schwann cell sheaths in spinal nerve roots of dystrophic mice. J Anat 119:169–180

    PubMed  CAS  Google Scholar 

  40. Rasminsky M, Kearney RE, Aguayo AJ, Bray GM (1978) Conduction of nervous impulses in spinal roots and peripheral nerves of dystrophic mice. Brain Res 143:71–85

    Article  PubMed  CAS  Google Scholar 

  41. Feltri ML, Wrabetz L (2005) Laminins and their receptors in Schwann cells and hereditary neuropathies. J Peripher Nerv Syst 10:128–143

    Article  PubMed  CAS  Google Scholar 

  42. Previtali SC et al (2003) Expression of laminin receptors in Schwann cell differentiation: evidence for distinct roles. J Neurosci 23:5520–5530

    PubMed  CAS  Google Scholar 

  43. Stewart HJ, Morgan L, Jessen KR, Mirsky R (2003) Changes in DNA synthesis rate in the Schwann cell lineage in vivo are correlated with the precursor-Schwann cell transition and myelination. Eur J Neurosci 5:1136–1144

    Article  Google Scholar 

  44. Wood PM, Bunge RP (1975) Evidence that sensory axons are mitogenic for Schwann cells. Nature 256:662–664

    Article  PubMed  CAS  Google Scholar 

  45. Morrissey TK, Levi AD, Nuijens A, Sliwkowski MX, Bunge RP (1995) Axon-induced mitogenesis of human Schwann cells involves heregulin and p185erbB2. Proc Natl Acad Sci USA 92:1431–1435

    Article  PubMed  CAS  Google Scholar 

  46. McGarvey ML, Baron-Van Evercooren A, Kleinman HK, Dubois-Dalcq M (1984) Synthesis and effects of basement membrane components in cultured rat Schwann cells. Dev Biol 105:18–28

    Article  PubMed  CAS  Google Scholar 

  47. Baron-Van Evercooren A, Gansmuller A, Gumpel M, Baumann N, Kleinman HK (1986) Schwann cell differentiation in vitro: extracellular matrix deposition and interaction. Dev Neurosci 8:182–196

    PubMed  CAS  Google Scholar 

  48. Saito F et al (2003) Unique role of dystroglycan in peripheral nerve myelination, nodal structure, and sodium channel stabilization. Neuron 38:747–758

    Article  PubMed  CAS  Google Scholar 

  49. Feltri ML et al (2002) Conditional disruption of beta 1 integrin in Schwann cells impedes interactions with axons. J Cell Biol 156:199–209

    Article  PubMed  CAS  Google Scholar 

  50. Mirsky R, Jessen KR (1999) The neurobiology of Schwann cells. Brain Pathol 9:293–311

    Article  PubMed  CAS  Google Scholar 

  51. Meredith J, Fazeli JB, Schwartz MA (1993) The extracellular matrix as a cell survival factor. Mol Biol Cell 4:953–961

    PubMed  CAS  Google Scholar 

  52. Grinspan JB, Marchionni MA, Reeves M, Coulaloglou M, Scherer SS (1996) Axonal interactions regulate Schwann cell apoptosis in developing peripheral nerve: neuregulin receptors and the role of neuregulins. J Neurosci 16:6107–6118

    PubMed  CAS  Google Scholar 

  53. Meier C, Parmantier E, Brennan A, Mirsky R, Jessen KR (1999) Developing Schwann cells acquire the ability to survive without axons by establishing an autocrine circuit involving insulin-like growth factor, neurotrophin-3, and platelet-derived growth factor-BB. J Neurosci 19:3847–3859

    PubMed  CAS  Google Scholar 

  54. Maurel P, Salzer JL (2000) Axonal regulation of Schwann cell proliferation and survival and the initial events of myelination requires PI 3-kinase activity. J Neurosci 20:4635–4645

    PubMed  CAS  Google Scholar 

  55. Parkinson DB et al (2001) Transforming growth factor beta (TGFbeta) mediates Schwann cell death in vitro and in vivo: examination of c-Jun activation, interactions with survival signals, and the relationship of TGFbeta-mediated death to Schwann cell differentiation. J Neurosci 21:8572–8585

    PubMed  CAS  Google Scholar 

  56. D’Antonio M et al (2006) TGFbeta type II receptor signaling controls Schwann cell death and proliferation in developing nerves. J Neurosci 26:8417–8427

    Article  PubMed  CAS  Google Scholar 

  57. Parkinson DB et al (2004) Krox-20 inhibits Jun-NH2-terminal kinase/c-Jun to control Schwann cell proliferation and death. J Cell Biol 164:385–394

    Article  PubMed  CAS  Google Scholar 

  58. Monuki ES, Weinmaster G, Kuhn R, Lemke G (1989) SCIP: a glial POU domain gene regulated by cyclic AMP. Neuron 3:783–793

    Article  PubMed  CAS  Google Scholar 

  59. Topilko P et al (1994) Krox-20 controls myelination in the peripheral nervous system. Nature 371:796–799

    Article  PubMed  CAS  Google Scholar 

  60. Jaegle M et al (1996) The POU factor Oct-6 and Schwann cell differentiation. Science 273:507–510

    Article  PubMed  CAS  Google Scholar 

  61. Mandemakers W et al (1999) Transcriptional regulation of the POU gene Oct-6 in Schwann cells. Adv Exp Med Biol 468:13–22

    PubMed  CAS  Google Scholar 

  62. Blanchard AD et al (1996) Oct-6 (SCIP/Tst-1) is expressed in Schwann cell precursors, embryonic Schwann cells, and postnatal myelinating Schwann cells: comparison with Oct-1, Krox-20, and Pax-3. J Neurosci Res 46:630–640

    Article  PubMed  CAS  Google Scholar 

  63. Zorick TS, Syroid DE, Arroyo E, Scherer SS, Lemke G (1996) The transcription factors SCIP and Krox-20 mark distinct stages and cell fates in Schwann cell differentiation. Mol Cell Neurosci 8:129–145

    Article  CAS  Google Scholar 

  64. Zorick TS, Syroid DE, Brown, A, Gridley T, Lemke G (1999) Krox-20 controls SCIP expression, cell cycle exit and susceptibility to apoptosis in developing myelinating Schwann cells. Development 126:1397–1406

    PubMed  CAS  Google Scholar 

  65. Nagarajan R et al (2001) EGR2 mutations in inherited neuropathies dominant-negatively inhibits myelin gene expression. Neuron 30:355–368

    Article  PubMed  CAS  Google Scholar 

  66. Jaegle M et al (2003) The POU proteins Brn-2 and Oct-6 share important functions in Schwann cell development. Genes Dev 17:1380–1391

    Article  PubMed  CAS  Google Scholar 

  67. Ghazvini M et al (2002) A cell type-specific allele of the POU gene Oct-6 reveals Schwann cell autonomous function in nerve development and regeneration. EMBO J 21:4612–4620

    Article  PubMed  CAS  Google Scholar 

  68. Taveggia C et al (2005) Neuregulin-1 type III determines the ensheathment fate of axons. Neuron 47:681–694

    Article  PubMed  CAS  Google Scholar 

  69. Bermingham JR Jr et al (1996) Tst-1/Oct-6/SCIP regulates a unique step in peripheral myelination and is required for normal respiration. Genes Dev 10:1751–1762

    Article  PubMed  CAS  Google Scholar 

  70. Jane-Lise S, Corda S, Chassagne C, Rappaport L (2000) The extracellular matrix and the cytoskeleton in heart hypertrophy and failure. Heart Fail Rev 5:239–250

    Article  PubMed  CAS  Google Scholar 

  71. Brakebusch C, Fassler R (2003) The integrin–actin connection, an eternal love affair. EMBO J 22:2324–2333

    Article  PubMed  CAS  Google Scholar 

  72. Guan JL (1997) Role of focal adhesion kinase in integrin signaling. Int J Biochem Cell Biol 29:1085–1096

    Article  PubMed  CAS  Google Scholar 

  73. Turner CE (2000) Paxillin interactions. J Cell Sci 113(Pt 23):4139–4140

    PubMed  CAS  Google Scholar 

  74. Turner CE (1998) Paxillin. Int J Biochem Cell Biol 30:955–999

    Article  PubMed  CAS  Google Scholar 

  75. Burridge K, Turner CE, Romer LH (1992) Tyrosine phosphorylation of paxillin and pp125FAK accompanies cell adhesion to extracellular matrix: a role in cytoskeletal assembly. J Cell Biol 119:893–903

    Article  PubMed  CAS  Google Scholar 

  76. Chen LM, Bailey D, Fernandez-Valle C (2000) Association of beta 1 integrin with focal adhesion kinase and paxillin in differentiating Schwann cells. J Neurosci 20:3776–3784

    PubMed  CAS  Google Scholar 

  77. Fernandez-Valle C, Gorman D, Gomez AM, Bunge MB (1997) Actin plays a role in both changes in cell shape and gene-expression associated with Schwann cell myelination. J Neurosci 17:241–250

    PubMed  CAS  Google Scholar 

  78. Michelson AM, Russell E, Harman PJ (1955) Dystrophia muscularis: a hereditary primary myopathy in the house mouse. Proc Natl Acad Sci USA 41:1079–1084

    Article  PubMed  CAS  Google Scholar 

  79. Meier H, Southard JL (1970) Muscular dystrophy in the mouse caused by an allele at the dy-locus. Life Sci 9:137–144

    Article  PubMed  CAS  Google Scholar 

  80. Besse S et al (2003) Spontaneous muscular dystrophy caused by a retrotransposal insertion in the mouse laminin alpha2 chain gene. Neuromuscul Disord 13:216–222

    Article  PubMed  Google Scholar 

  81. Miyagoe Y et al (1997) Laminin alpha2 chain-null mutant mice by targeted disruption of the Lama2 gene: a new model of merosin (laminin 2)-deficient congenital muscular dystrophy. FEBS Lett 415:33–39

    Article  PubMed  CAS  Google Scholar 

  82. Kuang W et al (1998) Merosin-deficient congenital muscular dystrophy. Partial genetic correction in two mouse models. J Clin Invest 102:844–852

    Article  PubMed  CAS  Google Scholar 

  83. Nakagawa M et al (2001) Schwann cell myelination occurred without basal lamina formation in laminin alpha2 chain-null mutant (dy3K/dy3K) mice. Glia 35:101–110

    Article  PubMed  CAS  Google Scholar 

  84. Brett FM et al (1998) Merosin-deficient congenital muscular dystrophy and cortical dysplasia. Eur J Paediatr Neurol 2:77–82

    Article  PubMed  CAS  Google Scholar 

  85. Deodato F et al (2002) Hypermyelinating neuropathy, mental retardation and epilepsy in a case of merosin deficiency. Neuromuscul Disord 12:392–398

    Article  PubMed  CAS  Google Scholar 

  86. Di Muzio A et al (2003) Dysmyelinating sensory-motor neuropathy in merosin-deficient congenital muscular dystrophy. Muscle Nerve 27:500–506

    Article  PubMed  CAS  Google Scholar 

  87. Quijano-Roy S et al (2004) EMG and nerve conduction studies in children with congenital muscular dystrophy. Muscle Nerve 29:292–299

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

We thank Prabhjot Dhadialla and Dr. Erin Norris for the comments on the manuscript, and Dr. Sidney Strickland and Dr. Karen Carlson for the useful discussion. Work in our laboratory is supported by grants from the NIH (NS035704-08 and NS038472-07), the Adelson Program in Neuronal Repair and Rehabilitation, and the Muscular Dystrophy Association (MDA4066).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zu-Lin Chen.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yu, WM., Yu, H. & Chen, ZL. Laminins in Peripheral Nerve Development and Muscular Dystrophy. Mol Neurobiol 35, 288–297 (2007). https://doi.org/10.1007/s12035-007-0026-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12035-007-0026-x

Keyword

Navigation