Skip to main content
Log in

The effectiveness of photobiomodulation in the management of temporomandibular pain sensitivity in rats: behavioral and neurochemical effects

  • Original Article
  • Published:
Lasers in Medical Science Aims and scope Submit manuscript

Abstract

This study analyzed the effects of photobiomodulation (PBM) with low-level laser therapy on nociceptive behavior and neuronal activity in the trigeminal nucleus after experimental unilateral temporomandibular joint (TMJ) disc injury. The animals were divided into 4 groups (n = 10 each): group 1, surgical injury of the articular disc and PBM; group 2, sham-operated subjected to PBM; group 3, surgical injury of the articular disc; and group 4, control (Naïve). Ten sessions of PBM were performed using GaAs laser with a wavelength of 904 nm, power of 75 W pico, average power of 0.043 W, area of the beam of 0.13 cm2, duration of the pulses of 60 nseg (in the frequency of 9500 Hz), energy density of 5.95 J/cm2, energy per point of 0.7 J, and power density of 333.8 mW/cm2, and the irradiation was done for 18 s per point. Neuropathic symptoms were evaluated using the von Frey test. Trigeminal ganglion samples underwent immunoblotting to examine the expression of substance P, vanilloid transient potential receptor of subtype-1 (TRPV-1), and peptide related to the calcitonin gene (CGRP). There was a total decrease in pain sensitivity after the second session of PBM in operated animals, and this decrease remains until the last session. There was a significant decrease in the expression of SP, TRPV-1, and CGRP after PBM. Photobiomodulation therapy was effective in reducing nociceptive behavior and trigeminal nucleus neuronal activity after TMJ disc injury.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Okeson JP, de Leeuw R (2011) Differential diagnosis of temporomandibular disorders and other orofacial pain disorders. Dent Clin N Am 55:105–120

    Article  PubMed  Google Scholar 

  2. Luz JG, Maragno IC, Martin MC (1997) Characteristics of chief complaints of patients with temporomandibular disorders in a Brazilian population. J Oral Rehabil 24:240–243

    Article  CAS  PubMed  Google Scholar 

  3. Hilgenberg PB, Saldanha AD, Cunha CO, Rubo JH, Conti PC (2012) Temporomandibular disorders, otologic symptoms and depression levels in tinnitus patients. J Oral Rehabil 39:239–244

    Article  CAS  PubMed  Google Scholar 

  4. Shankland WE 2nd (2000) The trigeminal nerve. Part I: an over-view. Cranio 18:238–248

    Article  PubMed  Google Scholar 

  5. Sessle BJ (2000) Acute and chronic craniofacial pain: brainstem mechanisms of nociceptive transmission and neuroplasticity, and their clinical correlates. Crit Rev Oral Biol Med 11:57–91

    Article  CAS  PubMed  Google Scholar 

  6. Tominaga M (2010) Activation and regulation of nociceptive transient receptor potential (TRP) channels, TRPV1 and TRPA1. Yakugaku Zasshi 130:289–294

    Article  CAS  PubMed  Google Scholar 

  7. Seifi M, Ebadifar A, Kabiri S et al (2017) Comparative effectiveness of low level laser therapy and transcutaneous electric nerve stimulation on temporomandibular joint disorders. J Lasers Med Sci 8:S27–S31

    Article  PubMed Central  PubMed  Google Scholar 

  8. Melis M, Di Giosia M, Zawawi KH (2012) Low level laser therapy for the treatment of temporomandibular disorders: a systematic review of the literature. Cranio 30:304–312

    Article  PubMed  Google Scholar 

  9. Bertolini GR, Artifon EL, Silva TS, Cunha DM, Vigo PR (2011) Low-level laser therapy, at 830 nm, for pain reduction in experimental model of rats with sciatica. Arq Neuropsiquiatr 69:356–359

    Article  PubMed  Google Scholar 

  10. de Oliveira Martins D, Martinez dos Santos F, Evany de Oliveira M, de Britto LR, Benedito Dias Lemos J, Chacur M (2013) Laser therapy and pain-related behavior after injury of the inferior alveolar nerve: possible involvement of neurotrophins. J Neurotrauma 30:480–486

    Article  PubMed Central  PubMed  Google Scholar 

  11. Carvalho CM, Lacerda JA, dos Santos Neto FP et al (2011) Evaluation of laser phototherapy in the inflammatory process of the rat’s TMJ induced by carrageenan. Photomed Laser Surg 29:245–254

    Article  PubMed  Google Scholar 

  12. Lemos GA, Rissi R, de Souza Pires IL et al (2016) Low-level laser therapy stimulates tissue repair and reduces the extracellular matrix degradation in rats with induced arthritis in the temporomandibular joint. Lasers Med Sci 31:1051–1059

    Article  PubMed  Google Scholar 

  13. Bonjardim LR, da Silva AP, Gameiro GH, Tambeli CH, Veiga MC (2009) Nociceptive behavior induced by mustard oil injection into the temporomandibular joint is blocked by a peripheral non-opioid analgesic and a central opioid analgesic. Pharmacol Biochem Behav 9:321–326

    Article  Google Scholar 

  14. Barretto SR, de Melo GC, dos Santos JC et al (2013) Evaluation of anti-nociceptive and anti-inflammatory activity of low-level laser therapy on temporomandibular joint inflammation in rodents. J Photochem Photobiol B 129:135–142

    Article  CAS  PubMed  Google Scholar 

  15. Hutchins B, Spears R, Hinton RJ, Harper RP (2000) Calcitonin gene-related peptide and substance P immunoreactivity in rat trigeminal ganglia and brainstem following adjuvant-induced inflammation of the temporomandibular joint. Arch Oral Biol 45:335–345

    Article  CAS  PubMed  Google Scholar 

  16. Hartwig AC, Mathias SI, Law AS, Gebhart GF (2003) Characterization and opioid modulation of inflammatory temporomandibular joint pain in the rat. J Oral Maxillofac Surg 61:1302–1309

    Article  PubMed  Google Scholar 

  17. Goulart AC, Correia FA, Sousa SC, Luz JG (2005) Study of the inflammatory process induced by injection of carrageenan or formalin in the rat temporomandibular joint. Braz Oral Res 9:99–105

    Article  Google Scholar 

  18. Embree MC, Iwaoka GM, Kong D et al (2015) Soft tissue ossification and condylar cartilage degeneration following TMJ disc perforation in a rabbit pilot study. Osteoarthr Cartil 23:629–639

    Article  CAS  Google Scholar 

  19. Kartha S, Zhou T, Granquist EJ, Winkelstein BA (2016) Development of a rat model of mechanically induced tunable pain and associated temporomandibular joint responses. J Oral Maxillofac Surg 74:54.e1–54.10

    Article  Google Scholar 

  20. de A Tréz T (2010) Refining animal experiments: the first Brazilian regulation on animal experimentation. Altern Lab Anim 38:239–244

    Article  Google Scholar 

  21. Toledo LG, Cavalcanti SC, Correa L, Luz JG (2014) Effects of injury or removal of the articular disc on maxillomandibular growth in young rats. J Oral Maxillofac Surg 72:2140–2147

    Article  PubMed  Google Scholar 

  22. Martins DO, Dos Santos FM, Ciena AP et al (2017) Neuropeptide expression and morphometric differences in crushed alveolar inferior nerve of rats: effects of photobiomodulation. Lasers Med Sci 32:833–840

    Article  PubMed  Google Scholar 

  23. Martins DO, Santos FM, Britto LR, Lemos JB, Chacur M (2017) Neurochemical effects of photobiostimulation in the trigeminal ganglion after inferior alveolar nerve injury. J Biol Regul Homeost Agents 31:147–152

    CAS  PubMed  Google Scholar 

  24. Sokal RR, Rohlf FJ (1995) Biometry: the principles and practice of statistics in biological research, vol 887, 3rd edn. W.H. Freeman and Co, New York

    Google Scholar 

  25. Sarlani E, Grace EG, Reynolds MA, Greenspan JD (2004) Evidence for up-regulated central nociceptive processing in patients with masticatory myofascial pain. J Orofac Pain 18:41–55

    PubMed  Google Scholar 

  26. Jenkins PA, Carroll JD (2011) How to report low-level laser therapy (LLLT)/photomedicine dose and beam parameters in clinical and laboratory studies. Photomed Laser Surg 29:785–787

    Article  PubMed  Google Scholar 

  27. Palmeira CC, Ashmawi HA, Posso Ide P (2011) Sex and pain perception and analgesia. Rev Bras Anestesiol 61:814–828

    Article  PubMed  Google Scholar 

  28. Bartley EJ, Fillingim RB (2013) Sex differences in pain: a brief review of clinical and experimental findings. Br J Anaesth 111:52–58

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  29. Chagas LR, Silva JA Jr, de Almeida Pires J, Costa MS (2015) Expression of mPGES-1 and IP mRNA is reduced by LLLT in both subplantar and brain tissues in the model of peripheral inflammation induced by carrageenan. Lasers Med Sci 30:83–88

    Article  PubMed  Google Scholar 

  30. Peplow PV, Chung TY, Baxter GD (2010) Laser photobiomodulation of wound healing: a review of experimental studies in mouse and rat animal models. Photomed Laser Surg 28:291–325

    Article  PubMed  Google Scholar 

  31. Jacobs R, Wu CH, Van Loven K, Desnyder M, Kolenaar B, Van Steenberghed D (2002) Methodology of oral sensory tests. J Oral Rehabil 29:720–730

    Article  CAS  PubMed  Google Scholar 

  32. Li W, Long X, Jiang S, Li Y, Fang W (2015) Histamine and substance P in synovial fluid of patients with temporomandibular disorders. J Oral Rehabil 42:363–369

    Article  CAS  PubMed  Google Scholar 

  33. Neubert JK, Maidment NT, Matsuka Y, Adelson DW, Kruger L, Spigelman I (2000) Inflammation-induced changes in primary afferent-evoked release of substance P within trigeminal ganglia in vivo. Brain Res 871:181–191

    Article  CAS  PubMed  Google Scholar 

  34. Denadai-Souza A, Cenac N, Casatti CA et al (2010) PAR(2) and temporomandibular joint inflammation in the rat. J Dent Res 89:1123–1128

    Article  CAS  PubMed  Google Scholar 

  35. Caterina MJ, Leffler A, Malmberg AB et al (2000) Impaired nociception and pain sensation in mice lacking the capsaicin receptor. Science 288:306–313

    Article  CAS  PubMed  Google Scholar 

  36. Walker KM, Urban L, Medhurst SJ et al (2003) The VR1 antagonist capsazepine reverses mechanical hyperalgesia in models of inflammatory and neuropathic pain. J Pharmacol Exp Ther 304:56–62

    Article  CAS  PubMed  Google Scholar 

  37. Durham PL, Garrett FG (2010) Emerging importance of neuron-satellite glia interactions within trigeminal ganglia in craniofacial pain. TOPAINJ 3:3–13

    CAS  Google Scholar 

  38. Koop LK, Hawkins JL, Cornelison LE, Durham PL (2017) Central role of protein kinase A in promoting trigeminal nociception in an in vivo model of temporomandibular disorders. J Oral Facial Pain Headache 31:264–274

    Article  PubMed Central  PubMed  Google Scholar 

Download references

Funding

This study was financially supported by the Brazilian funding agency FAPESP (project no. 2017/05218-5).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to João Gualberto C. Luz.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

The study was approved by the local committees on ethics on the use of animals (processes 6/2015 FO and 37/2015 ICB).

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

de Freitas Rodrigues, A., de Oliveira Martins, D., Chacur, M. et al. The effectiveness of photobiomodulation in the management of temporomandibular pain sensitivity in rats: behavioral and neurochemical effects. Lasers Med Sci 35, 447–453 (2020). https://doi.org/10.1007/s10103-019-02842-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10103-019-02842-0

Keywords

Navigation