Skip to main content

Advertisement

Log in

Tumor-derived extracellular vesicles: insights into bystander effects of exosomes after irradiation

  • Review Article
  • Published:
Lasers in Medical Science Aims and scope Submit manuscript

Abstract

This review article aims to address the kinetic of TDEs in cancer cells pre- and post-radiotherapy. Radiotherapy is traditionally used for the treatment of multiple cancer types; however, there is growing evidence to show that radiotherapy exerts NTEs on cells near to the irradiated cells. In tumor mass, irradiated cells can affect non-irradiated cells in different ways. Of note, exosomes are nano-scaled cell particles releasing from tumor cells and play key roles in survival, metastasis, and immunosuppression of tumor cells. Recent evidence indicated that irradiation has the potential to affect the dynamic of different signaling pathways such as exosome biogenesis. Indeed, exosomes act as intercellular mediators in various cell communication through transmitting bio-molecules. Due to their critical roles in cancer biology, exosomes are at the center of attention. TDEs contain an exclusive molecular signature that they may serve as tumor biomarker in the diagnosis of different cancers. Interestingly, radiotherapy and IR could also contribute to altering the dynamic of exosome secretion. Most probably, the content of exosomes in irradiated cells is different compared to exosomes originated from the non-irradiated BCs. Irradiated cells release exosomes with exclusive content that mediate NTEs in BCs. Considering variation in cell type, IR doses, and radio-resistance or radio-sensitivity of different cancers, there is, however, contradictions in the feature and activity of irradiated exosomes on neighboring cells.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Abbreviations

ALIX:

ALG2-interacting protein X

BCs:

Bystander cells

ESCRT:

Endosomal sorting complex required for transport

EMT:

Epithelial-to-mesenchymal transition

ECM:

Extracellular matrix

EVs:

Extracellular vesicles

HSCs:

Hematopoietic stem cells

HRS:

Hepatocyte growth factor-regulated tyrosine kinase substrate

ILVs:

Intraluminal vesicles

IR:

Ionizing radiation

MHC I, II:

Major histocompatibility complex class I and class II molecules

MMPs:

Matrix metalloproteinase

MSCs:

Mesenchymal stem cells

miRNAs:

Micro-RNAs

MVs:

Microvesicles

ABs:

Apoptotic bodies

MVBs:

Multivesicular bodies

NTEs:

Non-targeting effects

PM:

Plasma membrane

ROS:

Reactive oxygen species

SNARs:

Soluble NSF attachment protein receptor

TEM:

Transmission electron microscopy

TDEs:

Tumor-derived exosomes

References

  1. Robbins PD, Morelli AE (2014) Regulation of immune responses by extracellular vesicles. Nat Rev Immunol 14(3):195

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Angelini F, Ionta V, Rossi F, Miraldi F, Messina E, Giacomello A (2016) Foetal bovine serum-derived exosomes affect yield and phenotype of human cardiac progenitor cell culture. BioImpacts 6(1):15–24

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Szabó GT, Tarr B, Pálóczi K, Éder K, Lajkó E, Kittel Á, Tóth S, György B, Pásztói M, Németh A (2014) Critical role of extracellular vesicles in modulating the cellular effects of cytokines. Cell Mol Life Sci 71(20):4055–4067

    Article  PubMed  CAS  Google Scholar 

  4. Rafi MA, Omidi Y (2015) A prospective highlight on exosomal nanoshuttles and cancer immunotherapy and vaccination. BioImpacts 5(3):117–122

    Article  CAS  Google Scholar 

  5. Sarvar DP, Shamsasenjan K, Akbarzadehlaleh P (2016) Mesenchymal stem cell-derived exosomes: new opportunity in cell-free therapy. Adv Pharm Bull 6 (3):293-299

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  6. Azmi AS, Bao B, Sarkar FH (2013) Exosomes in cancer development, metastasis, and drug resistance: a comprehensive review. Cancer Metastasis Rev 32(3–4):623–642

    Article  CAS  PubMed  Google Scholar 

  7. Wang J-s, Wang H-j, H-l Q (2018) Biological effects of radiation on cancer cells. Mil Med Res 5(1):20

    PubMed  PubMed Central  Google Scholar 

  8. Zhang D, Zhou T, He F, Rong Y, Lee SH, Wu S, Zuo L (2016) Reactive oxygen species formation and bystander effects in gradient irradiation on human breast cancer cells. Oncotarget 7(27):41622

    PubMed  PubMed Central  Google Scholar 

  9. Diamond JM, Vanpouille-Box C, Spada S, Rudqvist N-P, Chapman JR, Ueberheide BM, Pilones KA, Sarfraz Y, Formenti SC, Demaria S (2018) Exosomes shuttle TREX1-sensitive IFN-stimulatory dsDNA from irradiated cancer cells to DCs. Cancer Immunol Res 6(8):910–920

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Camussi G, Deregibus MC, Bruno S, Cantaluppi V, Biancone L (2010) Exosomes/microvesicles as a mechanism of cell-to-cell communication. Kidney Int 78(9):838–848

    Article  CAS  PubMed  Google Scholar 

  11. Ostrowski M, Carmo NB, Krumeich S, Fanget I, Raposo G, Savina A, Moita CF, Schauer K, Hume AN, Freitas RP (2010) Rab27a and Rab27b control different steps of the exosome secretion pathway. Nat Cell Biol 12(1):19

    Article  CAS  PubMed  Google Scholar 

  12. Kowal J, Tkach M, Théry C (2014) Biogenesis and secretion of exosomes. Curr Opin Cell Biol 29:116–125

    Article  CAS  PubMed  Google Scholar 

  13. Kowal J, Arras G, Colombo M, Jouve M, Morath JP, Primdal-Bengtson B, Dingli F, Loew D, Tkach M, Théry C (2016) Proteomic comparison defines novel markers to characterize heterogeneous populations of extracellular vesicle subtypes. Proc Natl Acad Sci 113(8):E968–E977

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Théry C, Amigorena S, Raposo G, Clayton A (2006) Isolation and characterization of exosomes from cell culture supernatants and biological fluids. Curr Protoc Cell Biol 3.22. 21–23.22. 29

  15. Pol E, Coumans F, Grootemaat A, Gardiner C, Sargent I, Harrison P, Sturk A, Leeuwen T, Nieuwland R (2014) Particle size distribution of exosomes and microvesicles determined by transmission electron microscopy, flow cytometry, nanoparticle tracking analysis, and resistive pulse sensing. J Thromb Haemost 12(7):1182–1192

    Article  PubMed  Google Scholar 

  16. Hessvik NP, Sandvig K, Llorente A (2013) Exosomal miRNAs as biomarkers for prostate cancer. Front Genet 4:36

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Muralidharan-Chari V, Clancy JW, Sedgwick A, D'Souza-Schorey C (2010) Microvesicles: mediators of extracellular communication during cancer progression. J Cell Sci 123(10):1603–1611

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Saha S, Woodbine L, Haines J, Coster M, Ricket N, Barazzuol L, Ainsbury E, Sienkiewicz Z, Jeggo P (2014) Increased apoptosis and DNA double-strand breaks in the embryonic mouse brain in response to very low-dose X-rays but not 50 Hz magnetic fields. J R Soc Interface 11(100):20140783

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  19. Sebbagh M, Renvoizé C, Hamelin J, Riché N, Bertoglio J, Bréard J (2001) Caspase-3-mediated cleavage of ROCK I induces MLC phosphorylation and apoptotic membrane blebbing. Nat Cell Biol 3(4):346

    Article  CAS  PubMed  Google Scholar 

  20. Valadi H, Ekström K, Bossios A, Sjöstrand M, Lee JJ, Lötvall JO (2007) Exosome-mediated transfer of mRNAs and microRNAs is a novel mechanism of genetic exchange between cells. Nat Cell Biol 9(6):654

    Article  CAS  PubMed  Google Scholar 

  21. Ludwig A-K, Giebel B (2012) Exosomes: small vesicles participating in intercellular communication. Int J Biochem Cell Biol 44(1):11–15

    Article  CAS  PubMed  Google Scholar 

  22. Raiborg C, Stenmark H (2009) The ESCRT machinery in endosomal sorting of ubiquitylated membrane proteins. Nature 458(7237):445

    Article  CAS  PubMed  Google Scholar 

  23. Stuffers S, Sem Wegner C, Stenmark H, Brech A (2009) Multivesicular endosome biogenesis in the absence of ESCRTs. Traffic 10(7):925–937

    Article  CAS  PubMed  Google Scholar 

  24. Hurwitz SN, Nkosi D, Conlon MM, York SB, Liu X, Tremblay DC, Meckes DG (2017) CD63 regulates Epstein-Barr virus LMP1 exosomal packaging, enhancement of vesicle production, and noncanonical NF-κB signaling. J Virol 91(5):e02251–e02216

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Nazarenko I, Rana S, Baumann A, McAlear J, Hellwig A, Trendelenburg M, Lochnit G, Preissner KT, Zöller M (2010) Cell surface tetraspanin Tspan8 contributes to molecular pathways of exosome-induced endothelial cell activation. Cancer Res 0008–5472. CAN-0009-2470

  26. Trajkovic K, Hsu C, Chiantia S, Rajendran L, Wenzel D, Wieland F, Schwille P, Brügger B, Simons M (2008) Ceramide triggers budding of exosome vesicles into multivesicular endosomes. Science 319(5867):1244–1247

    Article  CAS  PubMed  Google Scholar 

  27. Mazzeo C, Calvo V, Alonso R, Mérida I, Izquierdo M (2016) Protein kinase D1/2 is involved in the maturation of multivesicular bodies and secretion of exosomes in T and B lymphocytes. Cell Death Differ 23(1):99

    Article  CAS  PubMed  Google Scholar 

  28. Stenmark H, Olkkonen VM (2001) The Rab gtpase family. Genome Biol 2(5):reviews3007.3001

    Article  Google Scholar 

  29. Hsu C, Morohashi Y, S-i Y, Manrique-Hoyos N, Jung S, Lauterbach MA, Bakhti M, Grønborg M, Möbius W, Rhee J (2010) Regulation of exosome secretion by Rab35 and its GTPase-activating proteins TBC1D10A–C. J Cell Biol 189(2):223–232

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Rezaie J, Nejati V, Khaksar M, Oryan A, Aghamohamadzadeh N, Shariatzadeh MA, Rahbarghazi R, Mehranjani MS (2018) Diabetic sera disrupted the normal exosome signaling pathway in human mesenchymal stem cells in vitro. Cell Tissue Res 1–11

  31. Bagheri HS, Mousavi M, Rezabakhsh A, Rezaie J, Rasta SH, Nourazarian A, Avci ÇB, Tajalli H, Talebi M, Oryan A (2018) Low-level laser irradiation at a high power intensity increased human endothelial cell exosome secretion via Wnt signaling. Lasers Med Sci 1–15

  32. Fevrier B, Raposo G (2004) Exosomes: endosomal-derived vesicles shipping extracellular messages. Curr Opin Cell Biol 16(4):415–421

    Article  CAS  PubMed  Google Scholar 

  33. Laulagnier K, Grand D, Dujardin A, Hamdi S, Vincent-Schneider H, Lankar D, Salles J-P, Bonnerot C, Perret B, Record M (2004) PLD2 is enriched on exosomes and its activity is correlated to the release of exosomes. FEBS Lett 572(1–3):11–14

    Article  CAS  PubMed  Google Scholar 

  34. Fader CM, Sánchez DG, Mestre MB, Colombo MI (2009) TI-VAMP/VAMP7 and VAMP3/cellubrevin: two v-SNARE proteins involved in specific steps of the autophagy/multivesicular body pathways. Biochim Biophys Acta 1793(12):1901–1916

    Article  CAS  PubMed  Google Scholar 

  35. Tiwari N, Wang C-C, Brochetta C, Ke G, Vita F, Qi Z, Rivera J, Soranzo MR, Zabucchi G, Hong W (2008) VAMP-8 segregates mast cell–preformed mediator exocytosis from cytokine trafficking pathways. Blood 111(7):3665–3674

    Article  CAS  PubMed  Google Scholar 

  36. Proux-Gillardeaux V, Raposo G, Irinopoulou T, Galli T (2007) Expression of the Longin domain of TI-VAMP impairs lysosomal secretion and epithelial cell migration. Biol Cell 99(5):261–271

    Article  CAS  PubMed  Google Scholar 

  37. Record M, Subra C, Silvente-Poirot S, Poirot M (2011) Exosomes as intercellular signalosomes and pharmacological effectors. Biochem Pharmacol 81(10):1171–1182

    Article  CAS  PubMed  Google Scholar 

  38. Savina A, Fader CM, Damiani MT, Colombo MI (2005) Rab11 promotes docking and fusion of multivesicular bodies in a calcium-dependent manner. Traffic 6(2):131–143

    Article  CAS  PubMed  Google Scholar 

  39. Wajant H, Moosmayer D, Wüest T, Bartke T, Gerlach E, Schönherr U, Peters N, Scheurich P, Pfizenmaier K (2001) Differential activation of TRAIL-R1 and-2 by soluble and membrane TRAIL allows selective surface antigen-directed activation of TRAIL-R2 by a soluble TRAIL derivative. Oncogene 20(30):4101

    Article  CAS  PubMed  Google Scholar 

  40. Rana S, Yue S, Stadel D, Zöller M (2012) Toward tailored exosomes: the exosomal tetraspanin web contributes to target cell selection. Int J Biochem Cell Biol 44(9):1574–1584

    Article  CAS  PubMed  Google Scholar 

  41. Sagar G, Sah RP, Javeed N, Dutta SK, Smyrk TC, Lau JS, Giorgadze N, Tchkonia T, Kirkland JL, Chari ST (2016) Pathogenesis of pancreatic cancer exosome-induced lipolysis in adipose tissue. Gut 65(7):1165–1174

    Article  CAS  PubMed  Google Scholar 

  42. Chowdhury R, Webber JP, Gurney M, Mason MD, Tabi Z, Clayton A (2015) Cancer exosomes trigger mesenchymal stem cell differentiation into pro-angiogenic and pro-invasive myofibroblasts. Oncotarget 6(2):715

    Article  PubMed  Google Scholar 

  43. Hood JL, Pan H, Lanza GM, Wickline SA (2009) Paracrine induction of endothelium by tumor exosomes. Lab Investig 89(11):1317

    Article  PubMed  Google Scholar 

  44. Hood JL, San RS, Wickline SA (2011) Exosomes released by melanoma cells prepare sentinel lymph nodes for tumor metastasis. Cancer Res 71(11):3792–3801

    Article  CAS  PubMed  Google Scholar 

  45. Al-Nedawi K, Meehan B, Micallef J, Lhotak V, May L, Guha A, Rak J (2008) Intercellular transfer of the oncogenic receptor EGFRvIII by microvesicles derived from tumour cells. Nat Cell Biol 10(5):619

    Article  CAS  PubMed  Google Scholar 

  46. Le MT, Hamar P, Guo C, Basar E, Perdigão-Henriques R, Balaj L, Lieberman J (2014) miR-200–containing extracellular vesicles promote breast cancer cell metastasis. J Clin Invest 124(12):5109–5128

    Article  PubMed  PubMed Central  Google Scholar 

  47. Zhou W, Fong MY, Min Y, Somlo G, Liu L, Palomares MR, Yu Y, Chow A, O’Connor STF, Chin AR (2014) Cancer-secreted miR-105 destroys vascular endothelial barriers to promote metastasis. Cancer Cell 25(4):501–515

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. You Y, Shan Y, Chen J, Yue H, You B, Shi S, Li X, Cao X (2015) Matrix metalloproteinase 13-containing exosomes promote nasopharyngeal carcinoma metastasis. Cancer Sci 106(12):1669–1677

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Sánchez CA, Andahur EI, Valenzuela R, Castellon EA, Fulla JA, Ramos CG, Triviño JC (2016) Exosomes from bulk and stem cells from human prostate cancer have a differential microRNA content that contributes cooperatively over local and pre-metastatic niche. Oncotarget 7(4):3993

    Article  PubMed  Google Scholar 

  50. King HW, Michael MZ, Gleadle JM (2012) Hypoxic enhancement of exosome release by breast cancer cells. BMC Cancer 12(1):421

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Kucharzewska P, Christianson HC, Welch JE, Svensson KJ, Fredlund E, Ringnér M, Mörgelin M, Bourseau-Guilmain E, Bengzon J, Belting M (2013) Exosomes reflect the hypoxic status of glioma cells and mediate hypoxia-dependent activation of vascular cells during tumor development. Proc Natl Acad Sci 201220998

  52. Greening DW, Ji H, Chen M, Robinson BW, Dick IM, Creaney J, Simpson RJ (2016) Secreted primary human malignant mesothelioma exosome signature reflects oncogenic cargo. Sci Rep 6:32643

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Svensson KJ, Kucharzewska P, Christianson HC, Sköld S, Löfstedt T, Johansson MC, Mörgelin M, Bengzon J, Ruf W, Belting M (2011) Hypoxia triggers a proangiogenic pathway involving cancer cell microvesicles and PAR-2–mediated heparin-binding EGF signaling in endothelial cells. Proc Natl Acad Sci 108(32):13147–13152

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Park JE, Tan HS, Datta A, Lai RC, Zhang H, Meng W, Lim SK, Sze SK (2010) Hypoxia modulates tumor microenvironment to enhance angiogenic and metastastic potential by secretion of proteins and exosomes. Mol Cell Proteomics

  55. Cho JA, Park H, Lim EH, Kim KH, Choi JS, Lee JH, Shin JW, Lee KW (2011) Exosomes from ovarian cancer cells induce adipose tissue-derived mesenchymal stem cells to acquire the physical and functional characteristics of tumor-supporting myofibroblasts. Gynecol Oncol 123(2):379–386

    Article  CAS  PubMed  Google Scholar 

  56. Yang J, Liu W, Lu Xa FY, Li L, Luo Y (2015) High expression of small GTPase Rab3D promotes cancer progression and metastasis. Oncotarget 6(13):11125

    Article  PubMed  PubMed Central  Google Scholar 

  57. Garnier D, Magnus N, Lee TH, Bentley V, Meehan B, Milsom C, Montermini L, Kislinger T, Rak J (2012) Cancer cells induced to express mesenchymal phenotype release exosome-like extracellular vesicles carrying tissue factor. J Biol Chem. https://doi.org/10.1074/jbc.M112.401760

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Roccaro AM, Sacco A, Maiso P, Azab AK, Tai Y-T, Reagan M, Azab F, Flores LM, Campigotto F, Weller E (2013) BM mesenchymal stromal cell–derived exosomes facilitate multiple myeloma progression. J Clin Invest 123(4):1542–1555

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Taylor DD, Gerçel-Taylor Ç, Lyons KS, Stanson J, Whiteside TL (2003) T-cell apoptosis and suppression of T-cell receptor/CD3-ζ by Fas ligand-containing membrane vesicles shed from ovarian tumors. Clin Cancer Res 9(14):5113–5119

    CAS  PubMed  Google Scholar 

  60. Wieckowski EU, Visus C, Szajnik M, Szczepanski MJ, Storkus WJ, Whiteside TL (2009) Tumor-derived microvesicles promote regulatory T cell expansion and induce apoptosis in tumor-reactive activated CD8+ T lymphocytes. J Immunol. https://doi.org/10.4049/jimmunol.0900970

    Article  CAS  PubMed  Google Scholar 

  61. Szczepanski MJ, Szajnik M, Welsh A, Whiteside TL, Boyiadzis M (2011) Blast-derived microvesicles in sera from patients with acute myeloid leukemia suppress natural killer cell function via membrane-associated transforming growth factor-β1. Haematologica 96(9):1302–1309

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Bretz NP, Ridinger J, Rupp A-K, Rimbach K, Keller S, Rupp C, Marmé F, Umansky L, Umansky V, Eigenbrod T (2013) Body fluid exosomes promote secretion of inflammatory cytokines in monocytic cells via TLR signaling. J Biol Chem. https://doi.org/10.1074/jbc.M113.512806

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Whiteside TL (2016) Tumor-derived exosomes and their role in tumor-induced immune suppression. Vaccines 4(4):35

    Article  PubMed Central  CAS  Google Scholar 

  64. Hong C-S, Sharma P, Yerneni SS, Simms P, Jackson EK, Whiteside TL, Boyiadzis M (2017) Circulating exosomes carrying an immunosuppressive cargo interfere with cellular immunotherapy in acute myeloid leukemia. Sci Rep 7(1):14684

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  65. Cheng L, Wang Y, Huang L (2017) Exosomes from M1-polarized macrophages potentiate the cancer vaccine by creating a pro-inflammatory microenvironment in the lymph node. Mol Ther 25(7):1665–1675

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Pfeffer SR, Grossmann KF, Cassidy PB, Yang CH, Fan M, Kopelovich L, Leachman SA, Pfeffer LM (2015) Detection of exosomal miRNAs in the plasma of melanoma patients. J Clin Med 4(12):2012–2027

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Hummel R, Hussey DJ, Haier J (2010) MicroRNAs: predictors and modifiers of chemo-and radiotherapy in different tumour types. Eur J Cancer 46(2):298–311

    Article  CAS  PubMed  Google Scholar 

  68. Gross JC, Chaudhary V, Bartscherer K, Boutros M (2012) Active Wnt proteins are secreted on exosomes. Nat Cell Biol 14(10):1036

    Article  CAS  PubMed  Google Scholar 

  69. Skog J, Würdinger T, Van Rijn S, Meijer DH, Gainche L, Curry WT Jr, Carter BS, Krichevsky AM, Breakefield XO (2008) Glioblastoma microvesicles transport RNA and proteins that promote tumour growth and provide diagnostic biomarkers. Nat Cell Biol 10(12):1470

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Blomme A, Fahmy K, Peulen O, Costanza B, Fontaine M, Struman I, Baiwir D, De Pauw E, Thiry M, Bellahcène A (2016) Myoferlin is a novel exosomal protein and functional regulator of cancer-derived exosomes. Oncotarget 7(50):83669

    Article  PubMed  PubMed Central  Google Scholar 

  71. Jakobsen KR, Paulsen BS, Bæk R, Varming K, Sorensen BS, Jørgensen MM (2015) Exosomal proteins as potential diagnostic markers in advanced non-small cell lung carcinoma. J Extracell Vesicles 4(1):26659

    Article  PubMed  CAS  Google Scholar 

  72. He M, Zeng Y (2016) Microfluidic exosome analysis toward liquid biopsy for cancer. J Lab Autom 21(4):599–608

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Konstantinell A, Bruun JA, Olsen R, Aspar A, Škalko-Basnet N, Sveinbjørnsson B, Moens U (2016) Secretomic analysis of extracellular vesicles originating from polyomavirus-negative and polyomavirus-positive Merkel cell carcinoma cell lines. Proteomics 16(19):2587–2591

    Article  CAS  PubMed  Google Scholar 

  74. Roberg-Larsen H, Lund K, Seterdal KE, Solheim S, Vehus T, Solberg N, Krauss S, Lundanes E, Wilson SR (2017) Mass spectrometric detection of 27-hydroxycholesterol in breast cancer exosomes. J Steroid Biochem Mol Biol 169:22–28

    Article  CAS  PubMed  Google Scholar 

  75. Skotland T, Ekroos K, Kauhanen D, Simolin H, Seierstad T, Berge V, Sandvig K, Llorente A (2017) Molecular lipid species in urinary exosomes as potential prostate cancer biomarkers. Eur J Cancer 70:122–132

    Article  CAS  PubMed  Google Scholar 

  76. McGale P, Darby SC, Hall P, Adolfsson J, Bengtsson N-O, Bennet AM, Fornander T, Gigante B, Jensen M-B, Peto R (2011) Incidence of heart disease in 35,000 women treated with radiotherapy for breast cancer in Denmark and Sweden. Radiother Oncol 100(2):167–175

    Article  PubMed  Google Scholar 

  77. Warters R, Hofer K (1977) Radionuclide toxicity in cultured mammalian cells: elucidation of the primary site for radiation-induced division delay. Radiat Res 69(2):348–358

    Article  CAS  PubMed  Google Scholar 

  78. Leach JK, Van Tuyle G, Lin P-S, Schmidt-Ullrich R, Mikkelsen RB (2001) Ionizing radiation-induced, mitochondria-dependent generation of reactive oxygen/nitrogen. Cancer Res 61(10):3894–3901

    CAS  PubMed  Google Scholar 

  79. Verheij M, Bartelink H (2000) Radiation-induced apoptosis. Cell Tissue Res 301(1):133–142

    Article  CAS  PubMed  Google Scholar 

  80. Valentin J (2005) Low-dose extrapolation of radiation-related cancer risk. Ann ICRP 35(4):1–140

    Article  PubMed  Google Scholar 

  81. Fleenor CJ, Marusyk A, DeGregori J (2010) Ionizing radiation and hematopoietic malignancies: altering the adaptive landscape. Cell Cycle 9(15):3077–3083

    Article  CAS  Google Scholar 

  82. Mutschelknaus L, Azimzadeh O, Heider T, Winkler K, Vetter M, Kell R, Tapio S, Merl-Pham J, Huber SM, Edalat L (2017) Radiation alters the cargo of exosomes released from squamous head and neck cancer cells to promote migration of recipient cells. Sci Rep 7(1):12423

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  83. Wilson KD, Sun N, Huang M, Zhang WY, Lee AS, Li Z, Wang SX, Wu JC (2010) Effects of ionizing radiation on self-renewal and pluripotency of human embryonic stem cells. Cancer Res 0008–5472. CAN-0009-4238

  84. Kato K, Kuwabara M, Kashiwakura I (2011) The influence of gender-and age-related differences in the radiosensitivity of hematopoietic progenitor cells detected in steady-state human peripheral blood. J Radiat Res 52(3):293–299

    Article  PubMed  Google Scholar 

  85. Masuda S, Hisamatsu T, Seko D, Urata Y, Goto S, Li TS, Ono Y (2015) Time-and dose-dependent effects of total-body ionizing radiation on muscle stem cells. Physiol Rep 3(4)

    Article  PubMed  PubMed Central  Google Scholar 

  86. Shao C, Folkard M, Michael BD, Prise KM (2005) Bystander signaling between glioma cells and fibroblasts targeted with counted particles. Int J Cancer 116(1):45–51

    Article  CAS  PubMed  Google Scholar 

  87. Eldh M, Ekström K, Valadi H, Sjöstrand M, Olsson B, Jernås M, Lötvall J (2010) Exosomes communicate protective messages during oxidative stress; possible role of exosomal shuttle RNA. PLoS One 5(12):e15353

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  88. Reynders K, Illidge T, Siva S, Chang JY, De Ruysscher D (2015) The abscopal effect of local radiotherapy: using immunotherapy to make a rare event clinically relevant. Cancer Treat Rev 41(6):503–510

    Article  PubMed  PubMed Central  Google Scholar 

  89. Blyth BJ, Sykes PJ (2011) Radiation-induced bystander effects: what are they, and how relevant are they to human radiation exposures? Radiat Res 176(2):139–157

    Article  CAS  PubMed  Google Scholar 

  90. Dewan MZ, Galloway AE, Kawashima N, Dewyngaert JK, Babb JS, Formenti SC, Demaria S (2009) Fractionated but not single-dose radiotherapy induces an immune-mediated abscopal effect when combined with anti–CTLA-4 antibody. Clin Cancer Res 1078–0432. CCR-1009-0265

  91. Arscott WT, Tandle AT, Zhao S, Shabason JE, Gordon IK, Schlaff CD, Zhang G, Tofilon PJ, Camphausen KA (2013) Ionizing radiation and glioblastoma exosomes: implications in tumor biology and cell migration. Transl Oncol 6(6):638–IN636

    Article  PubMed  PubMed Central  Google Scholar 

  92. Yu X, Harris SL, Levine AJ (2006) The regulation of exosome secretion: a novel function of the p53 protein. Cancer Res 66(9):4795–4801

    Article  CAS  PubMed  Google Scholar 

  93. Gallet R, Dawkins J, Valle J, Simsolo E, De Couto G, Middleton R, Tseliou E, Luthringer D, Kreke M, Smith RR (2016) Exosomes secreted by cardiosphere-derived cells reduce scarring, attenuate adverse remodelling, and improve function in acute and chronic porcine myocardial infarction. Eur Heart J 38(3):201–211

    PubMed Central  Google Scholar 

  94. Jelonek K, Wojakowska A, Marczak L, Muer A, Tinhofer-Keilholz I, Lysek-Gladysinska M, Widlak P, Pietrowska M (2015) Ionizing radiation affects protein composition of exosomes secreted in vitro from head and neck squamous cell carcinoma. Acta Biochim Pol 62(2)

    Article  CAS  PubMed  Google Scholar 

  95. Hazawa M, Tomiyama K, Saotome-Nakamura A, Obara C, Yasuda T, Gotoh T, Tanaka I, Yakumaru H, Ishihara H, Tajima K (2014) Radiation increases the cellular uptake of exosomes through CD29/CD81 complex formation. Biochem Biophys Res Commun 446(4):1165–1171

    Article  CAS  PubMed  Google Scholar 

  96. Al-Mayah AH, Irons SL, Pink RC, Carter DR, Kadhim MA (2012) Possible role of exosomes containing RNA in mediating nontargeted effect of ionizing radiation. Radiat Res 177(5):539–545

    Article  CAS  PubMed  Google Scholar 

  97. Mutschelknaus L, Peters C, Winkler K, Yentrapalli R, Heider T, Atkinson MJ, Moertl S (2016) Exosomes derived from squamous head and neck cancer promote cell survival after ionizing radiation. PLoS One 11(3):e0152213

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  98. Al-Mayah A, Bright S, Chapman K, Irons S, Luo P, Carter D, Goodwin E, Kadhim M (2015) The non-targeted effects of radiation are perpetuated by exosomes. Mut Res Fundam Mol Mech Mutagen 772:38–45

    Article  CAS  Google Scholar 

  99. Kumar Jella K, Rani S, O'driscoll L, McClean B, Byrne H, Lyng F (2014) Exosomes are involved in mediating radiation induced bystander signaling in human keratinocyte cells. Radiat Res 181(2):138–145

    Article  PubMed  CAS  Google Scholar 

  100. Xu S, Ding N, Pei H, Hu W, Wei W, Zhang X, Zhou G, Wang J (2014) MiR-21 is involved in radiation-induced bystander effects. RNA Biol 11(9):1161–1170

    Article  PubMed  PubMed Central  Google Scholar 

  101. Xu S, Wang J, Ding N, Hu W, Zhang X, Wang B, Hua J, Wei W, Zhu Q (2015) Exosome-mediated microRNA transfer plays a role in radiation-induced bystander effect. RNA Biol 12(12):1355–1363

    Article  PubMed  PubMed Central  Google Scholar 

  102. Song M, Wang Y, Shang Z-F, Liu X-D, Xie D-F, Wang Q, Guan H, Zhou P-K (2016) Bystander autophagy mediated by radiation-induced exosomal miR-7-5p in non-targeted human bronchial epithelial cells. Sci Rep 6:30165

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Cicero AL, Delevoye C, Gilles-Marsens F, Loew D, Dingli F, Guéré C, André N, Vié K, Van Niel G, Raposo G (2015) Exosomes released by keratinocytes modulate melanocyte pigmentation. Nat Commun 6:7506

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

The authors thank the staffs of Solid Tumor Research Center, Urmia University of Medical Sciences.

Funding

This study was supported by a grant from Urmia University of Medical Sciences.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Reza Rahbarghazi or Jafar Rezaie.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interests.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jabbari, N., Karimipour, M., Khaksar, M. et al. Tumor-derived extracellular vesicles: insights into bystander effects of exosomes after irradiation. Lasers Med Sci 35, 531–545 (2020). https://doi.org/10.1007/s10103-019-02880-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10103-019-02880-8

Keywords

Navigation