Skip to main content

Advertisement

Log in

Critical role of extracellular vesicles in modulating the cellular effects of cytokines

  • Research article
  • Published:
Cellular and Molecular Life Sciences Aims and scope Submit manuscript

Abstract

Under physiological and pathological conditions, extracellular vesicles (EVs) are present in the extracellular compartment simultaneously with soluble mediators. We hypothesized that cytokine effects may be modulated by EVs, the recently recognized conveyors of intercellular messages. In order to test this hypothesis, human monocyte cells were incubated with CCRF acute lymphoblastic leukemia cell line-derived EVs with or without the addition of recombinant human TNF, and global gene expression changes were analyzed. EVs alone regulated the expression of numerous genes related to inflammation and signaling. In combination, the effects of EVs and TNF were additive, antagonistic, or independent. The differential effects of EVs and TNF or their simultaneous presence were also validated by Taqman assays and ELISA, and by testing different populations of purified EVs. In the case of the paramount chemokine IL-8, we were able to demonstrate a synergistic upregulation by purified EVs and TNF. Our data suggest that neglecting the modulating role of EVs on the effects of soluble mediators may skew experimental results. On the other hand, considering the combined effects of cytokines and EVs may prove therapeutically useful by targeting both compartments at the same time.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Abbreviations

CNR2:

Cannabinoid receptor 2

EV:

Extracellular vesicle

Gex (HPRT):

Gene expression (relative to HPRT)

GSEA:

Gene set enrichment analysis

HPRT:

Hypoxanthine-guanine phosphoribosyltransferase

ICAM1:

Intracellular adhesion molecule 1

IL-8:

Interleukin 8

KEGG:

Kyoto Encyclopedia of Genes and Genomes

NPC1:

Niemann–Pick disease C1

MMP9:

Matrix metalloproteinase 9

SMPD3:

Sphingomyelin phosphodiesterase 3

TEM:

Transmission electron microscopy

TNF:

Tumor necrosis factor

References

  1. György B, Szabó T, Pásztói M, Pál Z, Misják P, Aradi B, László V, Pállinger É, Pap E, Kittel Á, Nagy G, Falus A, Buzás E (2011) Membrane vesicles, current state-of-the-art: emerging role of extracellular vesicles. Cell Mol Life Sci 68(16):2667–2688. doi:10.1007/s00018-011-0689-3

    Article  PubMed  PubMed Central  Google Scholar 

  2. Witwer KW, Buzás EI, Bemis LT, Bora A, Lässer C, Lötvall J, Nolte-’t Hoen EN, Piper MG, Sivaraman S, Skog J, Théry C, Wauben MH, Hochberg F (2013) Standardization of sample collection, isolation and analysis methods in extracellular vesicle research. J Extracell Vesicles 27(2)

  3. Gutiérrez-Vázquez C, Villarroya-Beltri C, Mittelbrunn M, Sánchez-Madrid F (2013) Transfer of extracellular vesicles during immune cell–cell interactions. Immunol Rev 251(1):125–142. doi:10.1111/imr.12013

    Article  PubMed  PubMed Central  Google Scholar 

  4. van der Pol E, Böing AN, Harrison P, Sturk A, Nieuwland R (2012) Classification, functions, and clinical relevance of extracellular vesicles. Pharmacol Rev 64(3):676–705. doi:10.1124/pr.112.005983

    Article  PubMed  Google Scholar 

  5. Raposo G, Stoorvogel W (2013) Extracellular vesicles: exosomes, microvesicles, and friends. J Cell Biol 200(4):373–383. doi:10.1083/jcb.201211138

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  6. Raposo G, Nijman HW, Stoorvogel W, Liejendekker R, Harding CV, Melief CJ, Geuze HJ (1996) B lymphocytes secrete antigen-presenting vesicles. J Exp Med 183(3):1161–1172. doi:10.1084/jem.183.3.1161

    Article  PubMed  CAS  Google Scholar 

  7. Valadi H, Ekstrom K, Bossios A, Sjostrand M, Lee JJ, Lotvall JO (2007) Exosome-mediated transfer of mRNAs and microRNAs is a novel mechanism of genetic exchange between cells. Nat Cell Biol 9(6):654–659

    Article  PubMed  CAS  Google Scholar 

  8. Eldh M, Ekström K, Valadi H, Sjöstrand M, Olsson B, Jernös M, Lötvall J (2010) Exosomes communicate protective messages during oxidative stress; possible role of exosomal shuttle RNA. PLoS ONE 5(12):e15353

    Article  PubMed  PubMed Central  Google Scholar 

  9. Boilard E, Nigrovic PA, Larabee K, Watts GFM, Coblyn JS, Weinblatt ME, Massarotti EM, Remold-O’Donnell E, Farndale RW, Ware J, Lee DM (2010) Platelets amplify inflammation in arthritis via collagen-dependent microparticle production. Science 327(5965):580–583. doi:10.1126/science.1181928

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  10. de Jong OG, Verhaar MC, Chen Y, Vader P, Gremmels H, Posthuma G, Schiffelers RM, Gucek M, van Balkom BWM (2012) Cellular stress conditions are reflected in the protein and RNA content of endothelial cell-derived exosomes. J Extracell Vesicles 1:18396. doi:10.3402/jev.v1i0.18396

    Google Scholar 

  11. Moscicki RA, Amento EP, Krane SM, Kurnick JT, Colvin RB (1983) Modulation of surface antigens of a human monocyte cell line, U937, during incubation with T lymphocyte-conditioned medium: detection of T4 antigen and its presence on normal blood monocytes. J Immunol 131(2):743–748

    PubMed  CAS  Google Scholar 

  12. Scanu A, Molnarfi N, Brandt KJ, Gruaz L, Dayer J-M, Burger D (2008) Stimulated T cells generate microparticles, which mimic cellular contact activation of human monocytes: differential regulation of pro- and anti-inflammatory cytokine production by high-density lipoproteins. J Leukoc Biol 83(4):921–927. doi:10.1189/jlb.0807551

    Article  PubMed  CAS  Google Scholar 

  13. Patkó D, György B, Németh A, Szabó-Taylor K, Kittel Á, Buzás E, Horváth R (2013) Label-free optical monitoring of surface adhesion of extracellular vesicles. Sens Actuators B-chem 188:697–701

    Article  Google Scholar 

  14. de Vrij J, Maas SL, van Nispen M, Sena-Esteves M, Limpens RW, Koster AJ, Leenstra S, Lamfers ML, Broekman ML (2013) Quantification of nanosized extracellular membrane vesicles with scanning ion occlusion sensing. Nanomedicine 8(9):1443–1458. doi:10.2217/nnm.12.173

    Article  PubMed  Google Scholar 

  15. Edgar R, Domrachev M, Lash AE (2002) Gene expression omnibus: nCBI gene expression and hybridization array data repository. Nucleic Acids Res 30(1):207–210. doi:10.1093/nar/30.1.207

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  16. Montojo J, Zuberi K, Rodriguez H, Kazi F, Wright G, Donaldson SL, Morris Q, Bader GD (2010) GeneMANIA Cytoscape plugin: fast gene function predictions on the desktop. Bioinformatics 26(22):2927–2928. doi:10.1093/bioinformatics/btq562

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  17. Mostafavi S, Ray D, Warde-Farley D, Grouios C, Morris Q (2008) GeneMANIA: a real-time multiple association network integration algorithm for predicting gene function. Genome Biol 9(Suppl 1):S4. doi:10.1186/gb-2008-9-s1-s4 (Epub 2008 Jun 27)

    Article  PubMed  PubMed Central  Google Scholar 

  18. Warde-Farley D, Donaldson SL, Comes O, Zuberi K, Badrawi R, Chao P, Franz M, Grouios C, Kazi F, Lopes CT, Maitland A, Mostafavi S, Montojo J, Shao Q, Wright G, Bader GD, Morris Q (2010) The GeneMANIA prediction server: biological network integration for gene prioritization and predicting gene function. Nucleic Acids Res 38(suppl 2):W214–W220. doi:10.1093/nar/gkq537

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  19. Subramanian A, Tamayo P, Mootha VK, Mukherjee S, Ebert BL, Gillette MA, Paulovich A, Pomeroy SL, Golub TR, Lander ES, Mesirov JP (2005) Gene set enrichment analysis: a knowledge-based approach for interpreting genome-wide expression profiles. Proc Natl Acad Sci USA 102(43):15545–15550. doi:10.1073/pnas.0506580102

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  20. Liberzon A, Subramanian A, Pinchback R, Thorvaldsdóttir H, Tamayo P, Mesirov JP (2011) Molecular signatures database (MSigDB) 3.0. Bioinformatics 27(12):1739–1740. doi:10.1093/bioinformatics/btr260

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  21. Merico D, Isserlin R, Stueker O, Emili A, Bader GD (2010) Enrichment map: a network-based method for gene-set enrichment visualization and interpretation. PLoS One 5(11):e13984

    Article  PubMed  PubMed Central  Google Scholar 

  22. Oesper L, Merico D, Isserlin R, Bader GD (2011) WordCloud: a Cytoscape plugin to create a visual semantic summary of networks. Source Code Biol Med 6(7). doi:10.1186/1751-0473-6-7

  23. Lacroix R, Robert S, Poncelet P, Kasthuri RS, Key NS, Dignat-George F (2010) ISTH SSC workshop. Standardization of platelet-derived microparticle enumeration by flow cytometry using calibrated beads: results of ISTH SSC collaborative workshop. J Thromb Haemost 8(2010):2571–2574

    Article  PubMed  CAS  Google Scholar 

  24. György B, Módos K, Pállinger É, Pálóczi K, Pásztói M, Misják P, Deli MA, Sipos Á, Szalai A, Voszka I, Polgár A, Tóth K, Csete M, Nagy G, Gay S, Falus A, Kittel Á, Buzás EI (2011) Detection and isolation of cell-derived microparticles are compromised by protein complexes resulting from shared biophysical parameters. Blood 117(4):e39–e48. doi:10.1182/blood-2010-09-307595

    Article  PubMed  Google Scholar 

  25. György B, Szabó TG, Turiák L, Wright M, Herczeg P, Lédeczi Z, Kittel A, Polgár A, Tóth K, Dérfalvi B, Zelenák G, Böröcz I, Carr B, Nagy G, Vékey K, Gay S, Falus A, Buzás EI (2012) Improved flow cytometric assessment reveals distinct microvesicle (cell-derived microparticle) signatures in joint diseases. PLoS ONE 7:e49726

    Article  PubMed  PubMed Central  Google Scholar 

  26. Trexler M, Bányai L, Patthy L (2001) A human protein containing multiple types of protease-inhibitory modules. Proc Natl Acad Sci USA 98(7):3705–3709. doi:10.1073/pnas.061028398

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  27. Kolowos W, Gaipl US, Sheriff A, Voll RE, Heyder P, Kern P, Kalden JR, Herrmann M (2005) Microparticles shed from different antigen-presenting cells display an individual pattern of Surface molecules and a distinct potential of allogeneic T-cell activation. Scand J Immunol 61(3):226–233. doi:10.1111/j.1365-3083.2005.01551.x

    Article  PubMed  CAS  Google Scholar 

  28. Dweep H, Sticht C, Pandey P, Gretz N (2011) miRWalk––Database: prediction of possible miRNA binding sites by “walking” the genes of three genomes. J Biomed Inform 44 (5):839–847. http://dx.doi.org/10.1016/j.jbi.2011.05.002

  29. Wahlgren J, Karlson DLT, Glader P, Telemo E, Valadi H (2012) Activated human T cells secrete exosomes that participate in IL-2-mediated immune response signaling. PLoS ONE. doi:10.1371/journal.pone.0049723

    Google Scholar 

  30. Ismail N, Wang Y, Dakhlallah D, Moldovan L, Agarwal K, Batte K, Shah P, Wisler J, Eubank TD, Tridandapani S, Paulaitis ME, Piper MG, Marsh CB (2013) Macrophage microvesicles induce macrophage differentiation and miR-223 transfer. Blood 121(6):984–995. doi:10.1182/blood-2011-08-374793

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  31. O’Connell RM, Rao DS, Chaudhuri AA, Baltimore D (2010) Physiological and pathological roles for microRNAs in the immune system. Nat Rev Immunol 10(2):111–122

    Article  PubMed  Google Scholar 

  32. Baj-Krzyworzeka M, Weglarczyk K, Mytar B, Szatanek R, Baran J, Zembala M (2011) Tumour-derived microvesicles contain interleukin-8 and modulate production of chemokines by human monocytes. Anticancer Res 31(4):1329–1335

    PubMed  CAS  Google Scholar 

  33. Gargalovic PS, Imura M, Zhang B, Gharavi NM, Clark MJ, Pagnon J, Yang W-P, He A, Truong A, Patel S, Nelson SF, Horvath S, Berliner JA, Kirchgessner TG, Lusis AJ (2006) Identification of inflammatory gene modules based on variations of human endothelial cell responses to oxidized lipids. Proc Natl Acad Sci USA 103(34):12741–12746. doi:10.1073/pnas.0605457103

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  34. Miller YI, Choi S-H, Wiesner P, Fang L, Harkewicz R, Hartvigsen K, Boullier AS, Gonen A, Diehl CJ, Que X, Montano E, Shaw PX, Tsimikas S, Binder CJ, Witztum JL (2011) Oxidation-specific epitopes are danger-associated molecular patterns recognized by pattern recognition receptors of innate immunity. Circ Res 108(2):235–248. doi:10.1161/circresaha.110.223875

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  35. Greenberg ME, Sun M, Zhang R, Febbraio M, Silverstein R, Hazen SL (2006) Oxidized phosphatidylserine-CD36 interactions play an essential role in macrophage-dependent phagocytosis of apoptotic cells. J Exp Med 203(12):2613–2625. doi:10.1084/jem.20060370

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  36. Tait JF, Smith C (1999) Phosphatidylserine receptors: role of CD36 in binding of anionic phospholipid vesicles to monocytic cells. J Biol Chem 274(5):3048–3054. doi:10.1074/jbc.274.5.3048

    Article  PubMed  CAS  Google Scholar 

  37. Munro S, Thomas KL, Abu-Shaar M (1993) Molecular characterization of a peripheral receptor for cannabinoids. Nature 365(6441):61–65

    Article  PubMed  CAS  Google Scholar 

  38. Casanova M, Blázquez C, Martinez-Palacio J, Villanueva C, Fernández-Acenero M, Huffman J, Jorcano J, Guzmán M (2003) Inhibition of skin tumor growth and angiogenesis in vivo by activation of cannabinoid receptors. J Clin Investig 111(1):43–50. doi:10.1172/jci16116

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  39. Fitzcharles M-A, McDougall J, Ste-Marie PA, Padjen I (2012) Clinical implications for cannabinoid use in the rheumatic diseases: potential for help or harm? Arthritis Rheum 64(8):2417–2425. doi:10.1002/art.34522

    Article  PubMed  Google Scholar 

  40. Gertsch J (2008) Anti-inflammatory cannabinoids in diet. Commun Integr Biol 1(1):26–28

    Article  PubMed  CAS  PubMed Central  Google Scholar 

Download references

Acknowledgments

We are grateful for Ms. Andrea Orbán’s and Mrs. Rita Antónia Fekete Heszné’s excellent technical assistance and Eszter Tóth for her contribution to some of the experiments. This work was funded by OTKA NK 84043, OTKA PD104369, Baross Gábor (REG-KM-09-1-2009-0010), and Marie Curie Networks for Initial Training-ITN-FP7-PEOPLE-2011-ITN, PITN-GA-2011-289033. Furthermore, this research was supported by TÁMOP 4.2.4. A/1-11-1-2012-0001 “National Excellence Program––Elaborating and operating an inland student and researcher personal support system” and subsidized by the European Union and co-financed by the European Social Fund.

Conflict of interest

The authors declare no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Edit Irén Buzás.

Additional information

K. Szabó-Taylor and E. I. Buzás contributed equally.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 2335 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Szabó, G.T., Tarr, B., Pálóczi, K. et al. Critical role of extracellular vesicles in modulating the cellular effects of cytokines. Cell. Mol. Life Sci. 71, 4055–4067 (2014). https://doi.org/10.1007/s00018-014-1618-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00018-014-1618-z

Keywords

Navigation