Skip to main content

Advertisement

Log in

In vitro effectiveness of 455-nm blue LED to reduce the load of Staphylococcus aureus and Candida albicans biofilms in compact bone tissue

  • Original Article
  • Published:
Lasers in Medical Science Aims and scope Submit manuscript

Abstract

The aim of this study was to evaluate the effectiveness of a 455-nm blue light-emitting diode (LED), at different application times, to reduce the load of Staphylococcus aureus and Candida albicans biofilms applied to compact bone tissue. The microorganisms S. aureus (ATCC 25923) and C. albicans (ATCC 18804) were used to form biofilms on 160 specimens of compact bones that had been divided into eight experimental groups (n = 10) for each microorganism, according to the times of application of the 455-nm blue LED (1, 2, 3, 4, 5, 7, and 10 min) with an irradiance of 75 mW/cm2. After LED application, decimal dilutions of microorganisms were performed, plated on BHI or Sabouraud agar and incubated for 24 h/35 °C to obtain CFU/mL counts. The findings were statistically analyzed using a ANOVA 5 %. For the group of S. aureus biofilms, all groups of 455-nm LED application differ compared with the control group (p < 0.05), in which no treatment was given. The largest reduction was obtained in the group receiving LED for 10 min (p = 0.00); within this group, a 3.2 log reduction was observed. For the C. albicans biofilms, only those samples receiving 3, 7, and 10 min of LED application presented a significant difference compared with the control group (p < 0.00), indicating that longer application times are required to achieve efficacy. The results of this study show that 455-nm LED light was effective to reduce the load of S. aureus and C. albicans biofilms, especially during 10 min of application.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Bisland SK, Chien C, Wilson BC, Burch S (2006) Pre-clinical in vitro and in vivo studies to examine the potential use of photodynamic therapy in the treatment of osteomyelitis. Photochem Photobiol Sci 5:31–38

    Article  PubMed  CAS  Google Scholar 

  2. Hevroni A, Koplewitz BZ (2007) Images in clinical medicine: bone with bone–chronic osteomyelitis. N Engl J Med 356:6–7

    Article  Google Scholar 

  3. Lima ALLM, Zumiotti AV (2007) Osteomielites: um desafio multiprofissional. Hosp Pract (Hosp Ed) 9:11–16

    Google Scholar 

  4. Yokoyama K, Uchino M, Nakamura K, Ohtsuka H, Suzuki T, Boku T, Itoman M (2006) Risk factors for deep infection in secondary intramedullary nailing after external fixation for open tibial fractures. Injury 37:554–560

    Article  PubMed  Google Scholar 

  5. Garcia PC, Irribarra LT, Ramirez VM, Cervilla VV, De La Barra RD, Montiel FA, Ortiz CM, Jacobelli SG (2000) Rendimiento del estúdio microbiológico em el diagnóstico de la infección osteoarticular. Rev Chil Infectol 17:101–108

    Article  Google Scholar 

  6. Arias F, Mata-Essayag S, Landaeta ME, Capriles CH, Pérez C, Núñez MJ, Carvajal A, Silva M (2004) Candida albicans osteomyelitis: case report and literature review. Int J Infect Dis 8:307–314. doi:10.1016/j.ijid.2003.12.006

    Article  PubMed  Google Scholar 

  7. Munin E, Giroldo LM, Alves LP, Costa MS (2007) Study of germ tube formation by Candida albicans after photodynamic antimicrobial chemotherapy (PACT). J Photochem Photobiol 88:16–20

    Article  CAS  Google Scholar 

  8. Figueiredo GC, Figueiredo ECQ, Medeiros AK, Costa FA, Maia Junior JR, Tavares-Neto J (2006) Osteomielite fúngica: análise secundária de dados. Rev Bras Ortop 41:200–210

    Google Scholar 

  9. Zeina B, Greenman J, Purcell WM, Das B (2001) Killing of cutaneous microbial species by photodynamic therapy. Br J Dermatol 144:274–278

    Article  PubMed  CAS  Google Scholar 

  10. Konopka K, Goslinski T (2007) Photodynamic therapy in dentistry. J Dent Res 86:694–707

    Article  PubMed  CAS  Google Scholar 

  11. Dai T, Gupta A, Murray CK, Vrahas MS, Tegos GP, Hamblin MR (2012) Blue light for infectious diseases: Propionibacterium acnes, Helicobacter pylori, and beyond? Drug Resist Updat 15:223–236. doi:10.1016/j.drup.2012.07.001

    Article  PubMed  PubMed Central  Google Scholar 

  12. Rosa LP, Silva FC, Nader SA, Meira GA, Viana MS (2014) In vitro effectiveness of antimicrobial photodynamic therapy (APDT) using a 660 nm laser and malachite green dye in Staphylococcus aureus biofilms arranged on compact and cancellous bone specimens. Lasers Med Sci 29:1959–1965. doi:10.1007/s10103-014-1613-5

    Article  PubMed  Google Scholar 

  13. Enwemeka CS, Williams D, Enwemeka SK, Hollosi S, Yens D (2009) Blue 470 nm light kills methicillin resistant Staphylococcus aureus (MRSA) in vitro. Photomed Laser Surg 27:221–226. doi:10.1089/pho.2008.2413

    Article  PubMed  Google Scholar 

  14. Enwemeka CS, Williams D, Hollosi S, Yens D, Enwemeka SK (2008) Visible 405 nm SLD photo—destroys methicillin resistant Staphylococcus aureus (MRSA) in vitro. Laser Surg Med 40:734–737. doi:10.1002/lsm.20724

    Article  Google Scholar 

  15. Dai T, Tegos GP, Zhiyentayev T, Mylonakis E, Hamblin MR (2010) Photodynamic therapy for methicillin-resistant Staphylococcus aureus infection in a mouse skin abrasion model. Lasers Surg Med 42:38–44. doi:10.1002/lsm.20887

    Article  PubMed  PubMed Central  Google Scholar 

  16. St Denis TG, Dai T, Izikson L, Astrakas C, Anderson RR, Hamblin MR, Tegos GP (2011) All you need is light: antimicrobial photoinactivation as an evolving and emerging discovery strategy against infections disease. Virulence 2:509–520. doi:10.4161/viru.2.6.17889

    Article  PubMed  PubMed Central  Google Scholar 

  17. Gueorgieva T, Dimitrov S, Dogandhiyska V, Kalchinov V, Belcheva M, Mantareva V, Angelov I, Kussovski V (2010) Susceptibility of S. aureus to methylene blue haematoporphyrin, phtalocyanines photodynamic effects. J IMAB 16:51–53. doi:10.5272/jimab.1642010_51-53

    Google Scholar 

  18. Simonetti O, Cirioni O, Orlando F, Alongi C, Lucarini G, Silvestri C et al (2011) Effectiveness of antimicrobial photodynamic therapy with a single treatment of RLP068/Cl in an experimental model of Staphylococcus aureus wound infection. Br J Dermatol 164:987–995. doi:10.1111/j.1365-2133.2011.10232.x

    Article  PubMed  CAS  Google Scholar 

  19. Feuerstein O, Ginsburg I, Dayan E, Veler D, Weiss EI (2005) Mechanism of visible light phototoxicity on Porphyromonas gingivalis and Fusobacterium nucleatum. Photochem Photobiol 81:1186–1189

    Article  PubMed  CAS  Google Scholar 

  20. Bumah VV, Masson–Meyers DS, Cashin SE, Enwemeka CS (2013) Wavelength and bacterial density influence the bactericidal effect of blue light on methicillin-resistant Staphylococcus aureus (MRSA). Photomed Laser Surg 3:547–553. doi:10.1089/pho.2012.3461

    Article  Google Scholar 

  21. Wheeland RG, Koreck A (2012) Safety and effectiveness of a new blue light device for the self-treatment of mild-to-moderate acne. J Clin Aesthet Dermatol 5:25–31

    PubMed  PubMed Central  Google Scholar 

  22. Rios A, He J, Glickman GN, Spears R, Schneiderman ED, Honeyman AL (2011) Evaluation of photodynamic therapy using a light-emitting diode lamp against Enterococcus faecalis in extracted human teeth. J Endod 37:856–859. doi:10.1016/j.joen.2011.03.014

    Article  PubMed  Google Scholar 

  23. Sterer N, Feuestein O (2005) Effect of visible light on malodour production by mixed oral microflora. J Med Microbiol 54:1225–1229

    Article  PubMed  CAS  Google Scholar 

  24. Alexandratou E, Yova D, Handris P, Kletsas D, Loukas S (2002) Human fibroblast alterations induced by low power laser irradiation at the single cell level using confocal microscopy. Photochem Photobiol Sci 1:547–552

    Article  PubMed  CAS  Google Scholar 

  25. Kohli R, Bose B, Gupta PK (2001) Induction of phr gene expression in E. coli strain KY706/pPL-1 by He-Ne laser (632.8 nm) irradiation. J Photochem Photobiol B 60:136–142

    Article  PubMed  CAS  Google Scholar 

  26. Klebanov GI, Strashkevich IA, Chichuk TV, Modestova TM, Vladimirov YA (1998) Effects of endogenous photosensitizers on the laser-induced priming of leucocytes. Membr Cell Biol 12:339–354

    PubMed  CAS  Google Scholar 

  27. Pottier R, Truscott TG (1986) The photochemistry of haematoporphyrin and related systems. Int J Radiat Biol Relat Stud Phys Chem Med 50:421–452

    Article  PubMed  CAS  Google Scholar 

  28. Cunningham ML, Krinsky NI, Giovanazzi SM, Peak MJ (1985) Superoxide anion is generated from cellular metabolites by solar radiation and its components. J Free Radic Biol Med 1:381–385

    Article  PubMed  CAS  Google Scholar 

  29. Losi A, Gärtner W (2011) Old chromophores, new photoactivation paradigms, trendy applications: flavins in blue light-sensing photoreceptors. Photochem Photobiol 87:491–510. doi:10.1111/j.1751-1097.2011.00913.x

    Article  PubMed  CAS  Google Scholar 

  30. Lavi R, Ankri R, Sinyakov M, Eichler M, Friedmann H, Shainberg A et al (2012) The plasma membrane is involved in the visible light-tissue interaction. Photomed Laser Surg 30:14–19. doi:10.1089/pho.2011.3083

    Article  PubMed  CAS  Google Scholar 

  31. Pereira CA, Romeiro RL, Costa AC, Machado AK, Junqueira JC, Jorge AO (2011) Susceptibility of Candida albicans, Staphylococcus aureus and Streptococcus mutans biofilms to photodynamic inactivation: an in vitro study. Lasers Med Sci 26:341–348. doi:10.1007/s10103-010-0852-3

    Article  PubMed  Google Scholar 

  32. Kiran MD, Giacometti A, Cirioni O, Balaban N (2008) Suppression of biofilm related, device-associated infections by staphylococcal quorum sensing inhibitors. Int J Artif Organs 31:761–770

    PubMed  CAS  Google Scholar 

  33. Dovigo LN, Pavarina AC, de Oliveira Mima EG, Giampaolo ET, Vergani CE, Bagnato VS (2011) Fungicidal effect of photodynamic therapy against fluconazole-resistant Candida albicans and Candida glabrata. Mycoses 54:123–130. doi:10.1111/j.1439-0507.2009.01769.x

    Article  PubMed  CAS  Google Scholar 

  34. Dunbar LM, Tang DM, Manausa RM (2008) A review of telavancin in the treatment of complicated skin and skin structure infections. Ther Clin Risk Manag 4:235–244

    PubMed  CAS  PubMed Central  Google Scholar 

  35. Lipovsky A, Nitzan Y, Gedanken A, Lubart R (2010) Visible light-induced killing of bacteria as a function of wavelength: implication for wound healing. Lasers Surg Med 42:467–472. doi:10.1002/lsm.20948

    Article  PubMed  Google Scholar 

  36. Kawada A, Aragane Y, Kameyama H, Sangen Y, Tezuka T (2002) Acne phototherapy with a high–intensity, enhanced, narrow-band, blue light source: an open study and in vitro investigation. J Dermatol Sci 30:129–135

    Article  PubMed  Google Scholar 

  37. Gois MM, Kurachi C, Santana EJ, Mima EG, Spolidório DM, Pelino JE et al (2010) Susceptibility of Staphylococcus aureus to porphyrin-mediated photodynamic antimicrobial chemotherapy: an in vitro study. Lasers Med Sci 25:391–395. doi:10.1007/s10103-009-0705-0

    Article  PubMed  Google Scholar 

  38. Guffey JS, Wilborn J (2006) In vitro bactericidal effects of 405-nm and 470-nm blue light. Photomed Laser Surg 24:684–688

    Article  PubMed  Google Scholar 

  39. Andrade MC, Ribeiro APD, Dovigo LN, Brunetti IL, Giampaolo ET, Bagnato VS, Pavarina AC (2013) Effect of different pre-irradiation times on curcumin-mediated photodynamic therapy against planktonic cultures and biofilms of Candida spp. Arch Oral Biol 58:200–210. doi:10.1016/j.archoralbio.2012.10.011

    Article  PubMed  CAS  Google Scholar 

  40. Costa ACBP, Rasteiro VMC, Pereira CA, Hashimoto ESHS, Junior MB, Junqueira JC, Jorge AOC (2011) Susceptibility of Candida albicans and Candida dubliniensis to erythrosine and LED-mediated photodynamic therapy. Arch Oral Biol 56:1299–1305. doi:10.1016/j.archoralbio.2011.05.013

    Article  PubMed  CAS  Google Scholar 

  41. Soares BM, Silva DL, Sousa GR, Amorim JCF, Resende MA, Pinotti M et al (2009) In vitro photodynamic inactivation of Candida spp. growth and adhesion to buccal epithelial cells. J Photochem Photobiol B 94:65–70. doi:10.1016/j.jphotobiol.2008.07.013

    Article  PubMed  CAS  Google Scholar 

  42. Costa AC, Chibebe J Jr, Pereira CA, Machado AK, Beltrame M Jr, Junqueira JC et al (2010) Susceptibility of planktonic cultures of Streptococcus mutans to photodynamic therapy with light-emitting diode. Braz Oral Res 24:413–418

    Article  PubMed  Google Scholar 

  43. Paardekopper M, van Gompel AE, van Steveninck J, van de Broek J (1995) The effect of photodynamic treatment of yeast with the sensitiser chloroaluminium phthalocyanine on various cellular parameters. J Photochem Photobiol B 62:561–567

    Article  Google Scholar 

  44. Zeina B, Greenman J, Corry D, Purcell WM (2002) Cytotoxic effects of antimicrobial photodynamic therapy on keratinocytes in vitro. Br J Dermatol 146:568–573

    Article  PubMed  CAS  Google Scholar 

  45. Demidova TN, Hamblin MR (2005) Effect of cell-photosensitizer binding and cell density on microbial photoinactivation. Antimicrob Agents Chemother 49:2329–2335. doi:10.1128/AAC.49.6.2329-2335.2005

    Article  PubMed  CAS  PubMed Central  Google Scholar 

Download references

Acknowledgments

The authors thank the Institutional Program of Scientific Initiation of Federal University of Bahia for the Scientific Initiation scholarships awarded for the development of this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Luciano Pereira Rosa.

Ethics declarations

Conflict of interest

The authors declare that they have no competing interests.

Ethics approval

This study was approved by the Animal Research Ethics Committee (UNESP Dental School, São José dos Campos-SP) under protocol number 05/2008-PA/CEP. The study strictly followed all of the ethical principles set forth by the Declaration of Helsinki (2000).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rosa, L.P., da Silva, F.C., Viana, M.S. et al. In vitro effectiveness of 455-nm blue LED to reduce the load of Staphylococcus aureus and Candida albicans biofilms in compact bone tissue. Lasers Med Sci 31, 27–32 (2016). https://doi.org/10.1007/s10103-015-1826-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10103-015-1826-2

Keywords

Navigation