Skip to main content
Log in

An in-vitro investigation of skin tissue soldering using gold nanoshells and diode laser

  • Original Article
  • Published:
Lasers in Medical Science Aims and scope Submit manuscript

Abstract

Gold-coated silica core nanoparticles have an optical response dictated by the plasmon resonance (PR). The wavelength at which the resonance occurs depends on the core and shell size, allowing nanoshells to be tailored for particular applications. The purpose of this study is to synthesize and use different concentrations of gold nanoshells as exogenous material for in-vitro skin tissue soldering and also to examine the effect of laser-soldering parameters on the properties of repaired skin. Two mixtures of albumin solder and different concentrations of gold nanoshells were prepared. A full-thickness incision of 2 × 20 mm2 was made on the surface and after addition of mixtures it was irradiated by an 810-nm diode laser at different power densities. The changes of tensile strength σt due to temperature rise, number of scan (Ns), and scan velocity (Vs) were investigated. The results showed at constant laser power density (I), σt of repaired incisions increases by increasing the concentration of gold nanoshells, Ns and decreasing Vs. It is therefore important to consider the trade-off between the scan velocity and the skin temperature for achieving an optimum operating condition. In our case, this corresponds to σt = 1,610 g/cm2 at I ∼ 60 Wcm–2, T ∼ 65°C, Ns = 10 and Vs = 0.2 mms−1.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Bass LS (1995) Laser tissue welding: a comprehensive review of current and future clinical applications. Lasers Surg Med 17:315–349

    Article  CAS  PubMed  Google Scholar 

  2. Gulsoy M, Dereli Z, Tabakogh H (2006) closure of skin incisions by 980-nm diode laser welding. Lasers Med Sci 2:5–10

    Article  Google Scholar 

  3. Simhon D, Brosh T, Halpern M, Ravid A, Vasilyev T, Kariv N, Katzir A (2004) Closure of skin incisions in rabbits by laser soldering: I: wound healing pattern. Lasers Surg Med 35:1–11

    Article  PubMed  Google Scholar 

  4. Gayen TK, Katz A, Savage HE, McCormick SA, Budansky Y, Lee J, Alfano RR (2003) Aorta and skin tissues welded by near-infrared Cr4þ:YAG laser. J Clin Laser Med Surg 21(5):259–269

    Article  PubMed  Google Scholar 

  5. Kamegaya Y, Farinell W, Echague AV, Akita H, Gallagher J (2005) Evaluation of photochemical tissue bonding for closure of skin incisions and excisions. Lasers Surg Med 37:264–270

    Article  PubMed  Google Scholar 

  6. Fried NM, Walsh JT (2000) Laser skin welding: in vivo tensile strength and wound healing results. Lasers Surg Med 27:554–565

    Google Scholar 

  7. Cooper C, Schwartz IP, Suh D, Kirsch AJ (2001) Optimal solder and power density for diode laser tissue soldering (LTS). Lasers Surg Med 29:53–61

    Article  CAS  PubMed  Google Scholar 

  8. Kirsch AJ, DeVries GM, Chang DT, Olsson CA, Connor JP, Hensle TW (1996) Hypospadias repair by laser tissue soldering: intra-operative results and follow up in 30 children. Urology 48:616–623

    Article  CAS  PubMed  Google Scholar 

  9. Khosroshahi ME, Nourbakhsh MS, Saremi S, Tabatabaee F (2010) Characterization of skin tissue soldering using diode laser and ICG: in-vitro studies. Laser Med Sci 25:207–212

    Article  CAS  Google Scholar 

  10. McNally M, Sorg BS, Chan EK, Welch AJ, Dawes JM (2000) Optimal parameters for laser tissue soldering. Part I: tensile strength and scanning electron microscopy analysis. Lasers Surg Med 26:346–356

    Article  CAS  PubMed  Google Scholar 

  11. Oz MC, Libutti SK, Ashton RC, Lontz JF, Lemole GM, Nowygrod R (1992) Comparison of laser-assisted fibrinogen-bonded and sutured canine arteriovenous anastomoses. Surgery 112:76–83

    CAS  PubMed  Google Scholar 

  12. DeCoste SD, Farinelli W, Flotte T, Anderson RR (1992) Dye-enhanced laser welding for skin closure. Lasers Surg Med 12:25–32

    Article  CAS  PubMed  Google Scholar 

  13. Bass LS, Libutti SK, Eaton AM (1993) New solders for laser welding and sealing. Lasers Surg Med Suppl 5:63, Abs. 305

    Google Scholar 

  14. Libutti SK, Oz MC, Forde KA (1990) Canine colonic anastomoses reinforced with dye enhanced fibrinogen and a diode laser. Surg Endosc 4:97–99

    Article  CAS  PubMed  Google Scholar 

  15. Spector D, Rabi Y, Vasserman I, Hardy A, Klausner J, Katzir A (2009) In vitro large diameter bowel anastomosis using a temperature controlled laser tissue soldering system and albumin stent. Lasers Surg Med 41:504–508

    Article  PubMed  Google Scholar 

  16. O’Neill AC, Winograd JM, Zeballos JL, Randolph MA, Bujold KE, Kochevar IE, Redmond RW (2007) Microvascular anastomosis using a photochemical tissue bonding technique. Lasers Surg Med 39:716–722

    Article  PubMed  Google Scholar 

  17. Xie H, Bendre SC, Burke AP, Gregory KW, Furnary AP (2004) Laser-assisted vascular end to end anastomosis of elastin heterograft to carotid artery with an albumin stent: a preliminary in vivo study. Lasers Surg Med 35:201–205

    Article  PubMed  Google Scholar 

  18. Zuger B, Ott B, Schaffner Th, Clemence J (2001) Laser solder welding of articular cartilage: tensile strength and chondrocyte viability. Lasers Surg Med 28:427–434

    Article  CAS  PubMed  Google Scholar 

  19. Capon A, Souil E, Gauthier B, Sumian C, Bachelet M, Buys B, Polla BS (2001) Laser-assisted skin closure (LASC) by using a 815-nm diode-laser system accelerates and improves wound healing. Lasers Surg Med 28:168–175

    Article  CAS  PubMed  Google Scholar 

  20. Simhon D, Halpern M, Brosh T, Vasilyev T, Kariv N, Argaman R, Katzir A (2004) In vivo laser soldering of incisions in juvenile pig skin, using GaAs or CO2 lasers and a temperature control system. SPIE Proc 5312:162–175

    Article  Google Scholar 

  21. Lobik L, Ravid A, Nissenkorn I, Kariv N, Bernheim J, Katzir A (1999) Bladder welding in rats using controlled temperature CO2 laser system. J Urol 161(5):1662–1665

    Article  CAS  PubMed  Google Scholar 

  22. Shumalinsky D, Lobik L, Cytron S, Halpern M, Vasilyev T, Ravid A, Katzir A (2004) Laparoscopic laser soldering for repair ofureteropelvic junction obstruction in the porcine model. J Endourol 18(2):177–181

    Article  PubMed  Google Scholar 

  23. Springer T, Welch AJ (1992) Temperature-controlled vessel welding. Lasers Surg Med Suppl 4:77, Abst. 345

    Google Scholar 

  24. Duff D, Baiker A, Edwards P (1993) A new hydrogel of gold cluster: formation and particle size variation. Langmuir 9:2301–2309

    Article  CAS  Google Scholar 

  25. Sershen SR, Westcott SL, Halas NJ (2000) Temperature-sensitive polymer-nanoshell composites for photothermally modulated drug delivery. J Biomed Mater Res 51:293–298

    Article  CAS  PubMed  Google Scholar 

  26. Stern JM, Stanfield J, Kabbani W (2008) Selective prostate cancer thermal ablation with laser-activated gold nanoshells. J Urol 179:748–753

    Article  PubMed  Google Scholar 

  27. Wang Y, Qian W, Tan Y (2008) A label-free biosensor based on gold nanoshell monolayers for monitoring biomolecular interactions in diluted whole blood. Biosens Bioelectron 23:1166–1170

    Article  CAS  PubMed  Google Scholar 

  28. Stern JM, Stanfield J, Lotan Y (2007) Efficacy of laser-activated gold nanoshells in ablating prostate cancer cells in vitro. J Endourol 21:939–943

    Article  PubMed  Google Scholar 

  29. Malicka J, Gryczynski I, Geddes CD, Lakowicz JR (2003) Metal enhanced emission from indocyanine green: a new approach to in vivo imaging. J Biomed Opt 8(3):472–478

    Article  CAS  PubMed  Google Scholar 

  30. Zhou JF, Chin MP, Schafer SA (1994) Aggregation and degradation of indocyanine green. Proc SPIE 2128:495–508

    Article  Google Scholar 

  31. Weissleder R (2001) A clearer vision for in vivo imaging. Nat Biotechnol 19(4):316–317

    Article  CAS  PubMed  Google Scholar 

  32. Hirsch LR, Stafford RJ, Bankson JA, Sershen SR, Rivera B, Price RE, Hazle JD, Halas NJ, West JL (2003) Nanoshell-mediated near-infrared thermal therapy of tumors under magnetic resonance guidance. Proc Natl Acad Sci USA 100(23):13549–13554

    Article  CAS  PubMed  Google Scholar 

  33. Ntziachristos V, Yodh AG, Schnall M, Chance B (2000) Concurrent MRI and diffuse optical tomography of breast after indocyanine green enhancement. Proc Natl Acad Sci USA 97(6):2767–2772

    Article  CAS  PubMed  Google Scholar 

  34. O’Neal DP, Hirsch LR, Halas NJ, Payne JD (2004) Photothermal tumor ablation in mice using near infrared-absorbing nanoparticles. Cancer Lett 209(2):171–176

    Article  PubMed  Google Scholar 

  35. Kirsch AJ, Duckett JW, Snyder HM, Canning DA, Harshaw DW, Howard P, Marcarak EJ, Zderic SA (1997) Skin flap closure by dermal laser tissue soldering: a wound healing model for sutureless hypospadias repair. Urology 50:263–272

    Article  CAS  PubMed  Google Scholar 

  36. Dew DK, Serbent R, Hart WS, Boynton GC, Byrne JD, Evans JG (1983) Laser-assisted microsurgical vessel anastomosis techniques: the use of argon and CO2 lasers. Lasers Surg Med 3:135

    Google Scholar 

  37. Alvarez-Puebla RA, Ross DJ, Nazri GA, Aroca RF (2005) Surface-enhanced Raman scattering on nanoshells with tunable surface plasmon resonance. Langmuir 21:10504–10508

    Article  CAS  PubMed  Google Scholar 

  38. Cohen M, Ravid A, Scharf V, Hauben D, Katzir A (2003) Temperature controlled burn generation system based on a CO2 laser and a silver halide fiber optic radiometer. Lasers Surg Med 32:413–416

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohammad E. Khosroshahi.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Nourbakhsh, M.S., Khosroshahi, M.E. An in-vitro investigation of skin tissue soldering using gold nanoshells and diode laser. Lasers Med Sci 26, 49–55 (2011). https://doi.org/10.1007/s10103-010-0805-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10103-010-0805-x

Keywords

Navigation