Skip to main content
Log in

Green-synthesized gold nanoparticles induce adaptation in photosynthetic responses, sugar and nitrogen metabolism, and seed yield of salt-stressed mustard plants

  • Original Paper
  • Published:
Clean Technologies and Environmental Policy Aims and scope Submit manuscript

Abstract

Salt stress has been inimically affecting agricultural productivity through diminishing crop yield outputs and leading to food insecurities around the globe. These consequences are expected to be worsening by 2050 leading to 50% loss in the arable areas, causing soil infertility, and hence making them unsuitable for the crop sustenance. Therefore, to tackle salt-induced adversities, it is necessary to adapt profitable and environment friendly approaches to resolve the concerns related to crop health and survival in response to the underlying stressful circumstances. With this regard, green-synthesized gold nanoparticles (AuNPs) have been emerging as an area of immense interest to enhance crop sustainable production to improve plant acclimatizing competence in the challenging environments including salt stress. The present study discusses the significance of green-synthesized AuNPs in the antioxidant-mediated defense regulations to manage salt-induced oxidative injuries in mustard plants. In addition, AuNPs-mediated modulations in photosynthetic functioning, sugar and nitrogen metabolism along with stomatal behavior have significantly inhibited salt-induced abnormalities in mustard growth and physiology. Altogether, the study suggested the benefitted response of green-synthesized AuNPs, which could be bestowed as ‘growth stimulants’ under salt-challenged regimes to safeguard mustard plant responses with minimized yield penalties.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Data availability

Enquiries about data availability should be directed to the authors.

References

  • Ahmed S, Ikram S (2016) Biosynthesis of gold nanoparticles: a green approach. J Photochem Photobiol B Biol 161:141–53

    Article  CAS  Google Scholar 

  • Ahanger MA, Tomar NS, Tittal M, Argal S, Agarwal R (2017) Plant growth under water/salt stress: ROS production; antioxidants and significance of added potassium under such conditions. Physiol Mol Biol Plant 23:731–744

    Article  Google Scholar 

  • Akyol TY, Yilmaz O, Uzilday B, Uzildayrö Tİ (2020) Plant response to salinity: an analysis of ROS formation, signaling, and antioxidant defense. Turk J Bot 44(1):1–3

    Article  CAS  Google Scholar 

  • Asiya SI, Pal K, Kralj S, El-Sayyad GS, de Souza FG, Narayanan T (2020) Sustainable preparation of gold nanoparticles via green chemistry approach for biogenic applications. Mat Tod Chem 17:100327

    Google Scholar 

  • Ashraf M, Harris PJC (2013) Photosynthesis under stressful environments: an overview. Photosynthetica 51(2):163–190

    Article  CAS  Google Scholar 

  • Asthir B, Kaur G, Kaur B (2020) Convergence of pathways towards ascorbate–glutathione for stress mitigation. J Plant Biol 63:243–257

    Article  CAS  Google Scholar 

  • Awad MA, Eisa NE, Virk P, Hendi AA, Ortashi KM, Mahgoub AS, Elobeid MA, Eissa FZ (2019) Green synthesis of gold nanoparticles: preparation, characterization, cytotoxicity, and anti-bacterial activities. Mat Lett 256:126608

    Article  CAS  Google Scholar 

  • Ayub MA, Ahmad HR, Ali M, Rizwan M, Ali S, urRehman MZ, Waris AA (2020) Salinity and its tolerance strategies in plants. Plant life under changing environment. Academic Press, Cambridge, pp 47–76

    Chapter  Google Scholar 

  • Bela K, Horváth E, Gallé Á, Szabados L, Tari I, Csiszár J (2015) Plant glutathione peroxidases: emerging role of the antioxidant enzymes in plant development and stress responses. J Plant Physiol 176:192–201

    Article  CAS  PubMed  Google Scholar 

  • Bertolino LT, Caine RS, Gray JE (2019) Impact of stomatal density and morphology on water-use efficiency in a changing world. Front Plant Sci 10:225

    Article  PubMed Central  PubMed  Google Scholar 

  • Beyer WF Jr, Fridovich I (1987) Assaying for superoxide dismutase activity: some large consequences of minor changes in conditions. Anal Biochem 161(2):559–566

    Article  CAS  PubMed  Google Scholar 

  • Cai J, Chen T, Wang Y, Qin G, Tian S (2020) SlREM1 triggers cell death by activating an oxidative burst and other regulators. Plant Physiol 183(2):717–732

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Chen F, Wang F, Wu F, Mao W, Zhang G, Zhou M (2010) Modulation of exogenous glutathione in antioxidant defense system against Cd stress in the two barley genotypes differing in Cd tolerance. Plant Physiol Biochem 48(8):663–672

    Article  CAS  PubMed  Google Scholar 

  • Dawalibi V, Monteverdi MC, Moscatello S, Battistelli A, Valentini R (2015) Effect of salt and drought on growth, physiological and biochemical responses of two Tamarix species. iForest-Biogeosci For 8(6):772

    Article  Google Scholar 

  • Dietz KJ, Mittler R, Noctor G (2016) Recent progress in understanding the role of reactive oxygen species in plant cell signaling. Plant Physiol 171(3):1535–1539

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Dong S, Beckles DM (2019) Dynamic changes in the starch-sugar interconversion within plant source and sink tissues promote a better abiotic stress response. J Plant Physiol 234:80–93

    Article  PubMed  Google Scholar 

  • Dorion S, Ouellet JC, Rivoal J (2021) Glutathione metabolism in plants under stress: beyond reactive oxygen species detoxification. Metabolites 11(9):641

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Elia AC, Galarini R, Taticchi MI, Dörr AJ, Mantilacci L (2003) Antioxidant responses and bioaccumulation in Ictalurus melas under mercury exposure. Ecotox Environ Saf 55(2):162–167

    Article  CAS  Google Scholar 

  • Faraz A, Faizan M, Sami F, Siddiqui H, Pichtel J, Hayat S (2019) Nanoparticles: biosynthesis, translocation and role in plant metabolism. Iet Nanobiotechnol 13(4):345–352

    Article  PubMed Central  PubMed  Google Scholar 

  • Foyer CH, Halliwell B (1976) The presence of glutathione and glutathione reductase in chloroplasts: a proposed role in ascorbic acid metabolism. Planta 133:21–25

    Article  CAS  PubMed  Google Scholar 

  • Fu H, Yang Y (2023) How plants tolerate salt stress. Curr Iss Mol Biol 45(7):5914–5934

    Article  CAS  Google Scholar 

  • Gour A, Jain NK (2019) Advances in green synthesis of nanoparticles. Art Cell Nanomed Biotech 47(1):844–851

    Article  CAS  Google Scholar 

  • Govindasamy P, Muthusamy SK, Bagavathiannan M, Mowrer J, Jagannadham PT, Maity A, Halli HM, GK S, Vadivel R, TK D, Raj R (2023) Nitrogen use efficiency—a key to enhance crop productivity under a changing climate. Front Plant Sci 14:1121073

    Article  PubMed Central  PubMed  Google Scholar 

  • Griffith OW (1980) Determination of glutathione and glutathione disulfide using glutathione reducatse and 2-vinylpiridyne. Anal Biochem 106(1980):207–212

    Article  CAS  PubMed  Google Scholar 

  • Hageman RH, Reed AJ (1980) Nitrate reductase from higher plants. Meth Enzymol 69:270–280

    Article  CAS  Google Scholar 

  • Heath RL, Packer L (1968) Photoperoxidation in isolated chloroplasts: I. kinetics and stoichiometry of fatty acid peroxidation. Arch Biochem Biophys 125(1):189–98

    Article  CAS  PubMed  Google Scholar 

  • Hedge JE, Hofreiter BT, Whistler RL (1962) Carbohydrate chemistry. Acad Press, New York, pp 371–80

    Google Scholar 

  • Hilty J, Muller B, Pantin F, Leuzinger S (2021) Plant growth: the what, the how, and the why. New Phytol 232:25–41

    Article  PubMed  Google Scholar 

  • Hossain MZ, Hossain MD, Fujita M (2006) Induction of pumpkin glutathione S-transferases by different stresses and its possible mechanisms. Biol Plant 50:210–218

    Article  CAS  Google Scholar 

  • Huber SC (1981) Interspecific variation in activity and regulation of leaf sucrose phosphate synthetase. Zeitfür Pflanzen 102(5):443–450

    Article  CAS  Google Scholar 

  • Islam NU, Jalil K, Shahid M, Rauf A, Muhammad N, Khan A, Shah MR, Khan MA (2019) Green synthesis and biological activities of gold nanoparticles functionalized with Salix alba. Arab J Chem 12(8):2914–2925

    Article  Google Scholar 

  • Khan MI, Khan NA (2014) Ethylene reverses photosynthetic inhibition by nickel and zinc in mustard through changes in PS II activity, photosynthetic nitrogen use efficiency, and antioxidant metabolism. Protoplasma 251:1007–1019

    Article  CAS  PubMed  Google Scholar 

  • Khan MIR, Asgher M, Khan NA (2014) Alleviation of salt-induced photosynthesis and growth inhibition by salicylic acid involves glycinebetaine and ethylene in mungbean (Vigna radiata L.). Plant Physiol Biochem 80:67–74

    Article  CAS  PubMed  Google Scholar 

  • Khan MIR, Jahan B, AlAjmi MF, Rehman MT, Khan NA (2020) Ethephon mitigates nickel stress by modulating antioxidant system, glyoxalase system and proline metabolism in Indian mustard. Physiol Mol Biol Plant 26:1201–1213

    Article  CAS  Google Scholar 

  • Kumar V, Guleria P, Kumar V, Yadav SK (2013) Gold nanoparticle exposure induces growth and yield enhancement in Arabidopsis thaliana. Sci Total Environ 461:462–468

    Article  ADS  PubMed  Google Scholar 

  • Kumari S, Khanna RR, Nazir F, Albaqami M, Chhillar H, Wahid I, Khan MI (2022) Bio-synthesized nanoparticles in developing plant abiotic stress resilience: a new boon for sustainable approach. Int J Mol Sci 23(8):4452

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Kuo TM, Warner RL, Kleinhofs A (1982) In vitro stability of nitrate reductase from barley leaves. Phytochemistry 21(3):531–533

    Article  CAS  Google Scholar 

  • Leonowicz G, TrzebuniakKF Z-P, Ślesak I, Mysliwa-Kurdziel B (2018) The activity of superoxide dismutases (SODs) at the early stages of wheat deetiolation. PLoS ONE 13(3):e0194678

    Article  PubMed Central  PubMed  Google Scholar 

  • Liao Q, Ding R, Du T, Kang S, Tong L, Li S (2022) Stomatal conductance drives variations of yield and water use of maize under water and nitrogen stress. Agri Water Manag 268:107651

    Article  Google Scholar 

  • Liao Q, Ding R, Du T, Kang S, Tong L, Li S (2023) Salinity-specific stomatal conductance model parameters are reduced by stomatal saturation conductance and area via leaf nitrogen. Sci Total Environ 876:162584

    Article  ADS  CAS  PubMed  Google Scholar 

  • Lindner RC (1944) Rapid analytical methods for some of the more common inorganic constituents of plant tissues. Plant Physiol 19(1):76

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Liu J, Fu C, Li G, Khan MN, Wu H (2021) ROS homeostasis and plant salt tolerance: plant nanobiotechnology updates. Sustainability 13(6):3552

    Article  CAS  Google Scholar 

  • Liu X, Hu B, Chu C (2022) Nitrogen assimilation in plants: current status and future prospects. J Genet Genom 49(5):394–404

    Article  CAS  Google Scholar 

  • Lotfi R, Abbasi A, Kalaji HM, Eskandari I, Sedghieh V, Khorsandi H, Sadeghian N, Yadav S, Rastogi A (2022) The role of potassium on drought resistance of winter wheat cultivars under cold dryland conditions: probed by chlorophyll a fluorescence. Plant Physiol Biochem 182:45–54

    Article  CAS  PubMed  Google Scholar 

  • Luwe MW, Takahama U, Heber U (1993) Role of ascorbate in detoxifying ozone in the apoplast of spinach (Spinacia oleracea L.) leaves. Plant Physiol 101(3):969–76

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Ma L, Liu X, Lv W, Yang Y (2022) Molecular mechanisms of plant responses to salt stress. Front Plant Sci 13:934877

    Article  PubMed Central  PubMed  Google Scholar 

  • Masato O (1980) An improved method for determination of L-ascorbic acid and L-dehydroascorbic acid in blood plasma. Clin Chim Acta 103(3):259–268

    Article  Google Scholar 

  • Maxwell K, Johnson GN (2000) Chlorophyll fluorescence—a practical guide. J Exp Bot 51(345):659–668

    Article  CAS  PubMed  Google Scholar 

  • Meena SS, Meena PD, Singh VV, Meena HS, Singh D, Yadav R, Singh KH, Sharma P, Nanjundan J, Singh BK, Singh YP (2019) DRMR-2019 (IC0598622; INGR17077), An Indian mustard (Brassica juncea) germplasm with white rust resistance. Ind J Plant Gen Res 32(2):281–281

    Google Scholar 

  • Munns R, Tester M (2008) Mechanisms of salinity tolerance. Annu Rev Plant Biol 59:651–681

    Article  CAS  PubMed  Google Scholar 

  • Mustafa G, Akhtar MS, Abdullah R (2019) Global concern for salinity on various agro-ecosystems. Salt Stress Microbe Plant Interact Causes Solut 1:1–9

    Google Scholar 

  • Nakano Y, Asada K (1981) Hydrogen peroxide is scavenged by ascorbate-specific peroxidase in spinach chloroplasts. Plant Cell Physiol 22(5):867–880

    CAS  Google Scholar 

  • Nazar R, Khan MIR, Iqbal N, Masood A, Khan NA (2014) Involvement of ethylene in reversal of salt-inhibited photosynthesis by sulfur in mustard. Physiol Plant 152:331–344

    Article  CAS  PubMed  Google Scholar 

  • Nianiou-Obeidat I, Madesis P, Kissoudis C, Voulgari G, Chronopoulou E, Tsaftaris A, Labrou NE (2017) Plant glutathione transferase-mediated stress tolerance: functions and biotechnological applications. Plant Cell Rep 36:791–805

    Article  CAS  PubMed  Google Scholar 

  • Okuda T, Matsuda Y, Yamanaka A, Sagisaka S (1991) Abrupt increase in the level of hydrogen peroxide in leaves of winter wheat is caused by cold treatment. Plant Physiol 97(3):1265–1267

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Pullela PK, Korrapati S, Reddy KS, Uthirapathy V (2022) Concentration of gold nanoparticles at near Zero-cost. Mat Tod Proceed 1(54):255–258

    Google Scholar 

  • Rastogi A, Zivcak M, Tripathi DK, Yadav S, Kalaji HM (2019) Phytotoxic effect of silver nanoparticles in Triticum aestivum: improper regulation of photosystem I activity as the reason for oxidative damage in the chloroplast. Photosynthetica 57(1):209–216

    Article  CAS  Google Scholar 

  • Raza A, Tabassum J, Fakhar AZ, Sharif R, Chen H, Zhang C, Ju L, Fotopoulos V, Siddique KH, Singh RK, Zhuang W (2022) Smart reprograming of plants against salinity stress using modern biotechnological tools. Crit Rev Biotech 12:1–28

    Google Scholar 

  • Ribeiro C, Stitt M, Hotta CT (2022) How stress affects your budget—stress impacts on starch metabolism. Front Plant Sci 13:774060

    Article  PubMed Central  PubMed  Google Scholar 

  • Sakhno LO, Yemets AI, Blume YB (2019) The role of ascorbate-glutathione pathway in reactive oxygen species balance under abiotic stresses. React Oxyg Nitrogen Sulfur Species Plants Prod Metab Signal Def Mech 18:89–111

    Google Scholar 

  • Santhosh PB, Genova J, Chamati H (2022) Green synthesis of gold nanoparticles: an eco-friendly approach. Chemistry 4(2):345–369

    Article  CAS  Google Scholar 

  • Saripalli G, Gupta PK (2015) AGPase: Its role in crop productivity with emphasis on heat tolerance in cereals. Theor Appl Genet 128:1893–1916

    Article  CAS  PubMed  Google Scholar 

  • Sarita AK, Avtar R, Rani B, Goyal V, Ahlawat P (2022) Germination and early growth of Indian mustard (Brassica juncea L.) genotypes under saline conditions. J Oilseed Brassica 13(2):143–52

    Google Scholar 

  • Singh G (2009) Salinity-related desertification and management strategies: Indian experience. Land Degrad Develop 20(4):367–385

    Article  Google Scholar 

  • Singh J, Singh V, Vineeth TV, Kumar P, Kumar N, Sharma PC (2019) Differential response of Indian mustard (Brassica juncea L., Czern and Coss) under salinity: photosynthetic traits and gene expression. Physiol Mol Biol Plant 25:71–83

  • Singh J, Singh V, Dutt V, Walia N, Kumawat G, Jakhar ML, Yadava DK, Sharma PC (2022) Insights into salt tolerance of mustard (Brassica juncea L. Czern & Coss): a metabolomics perspective. Environ Exp Bot 1(194):104760

    Article  Google Scholar 

  • Song Y, Zheng C, Basnet R, Li S, Chen J, Jiang M (2022) Astaxanthin synthesized gold nanoparticles enhance salt stress tolerance in rice by enhancing tetrapyrrole biosynthesis and scavenging reactive oxygen species in vitro. Plant Stress 6:100122

    Article  CAS  Google Scholar 

  • Stein O, Granot D (2019) An overview of sucrose synthases in plants. Front Plant Sci 10:95

    Article  PubMed Central  PubMed  Google Scholar 

  • Thordal-Christensen H, Zhang Z, Wei Y, Collinge DB (1997) Subcellular localization of H2O2 in plants. H2O2 accumulation in papillae and hypersensitive response during the barley—powdery mildew interaction. Plant J 11(6):1187–94

    Article  CAS  Google Scholar 

  • Usuda H (1985) The activation state of ribulose 1, 5-bisphosphate carboxylase in maize leaves in dark and light. Plant Cell Physiol 26(8):1455–1463

    CAS  Google Scholar 

  • Wahid I, Rani P, Kumari S, Ahmad R, Hussain SJ, Alamri S, Tripathy N, Khan MIR (2022) Biosynthesized gold nanoparticles maintained nitrogen metabolism, nitric oxide synthesis, ions balance, and stabilizes the defense systems to improve salt stress tolerance in wheat. Chemosphere 287:132142

    Article  CAS  PubMed  Google Scholar 

  • Wang W, Vinocur B, Altman A (2003) Plant responses to drought, salinity and extreme temperatures: towards genetic engineering for stress tolerance. Planta 218:1–4

    Article  CAS  PubMed  Google Scholar 

  • Wani AS, Ahmad A, Hayat S, Tahir I (2019) Epibrassinolide and proline alleviate the photosynthetic and yield inhibition under salt stress by acting on antioxidant system in mustard. Plant Physiol Biochem 135:385–394

    Article  CAS  PubMed  Google Scholar 

  • Xie LY, Lin ED, Zhao HL, Feng YX (2016) Changes in the activities of starch metabolism enzymes in rice grains in response to elevated CO2 concentration. Int J Biom 60:727–736

    Article  Google Scholar 

  • Xu Z, Zhou G (2008) Responses of leaf stomatal density to water status and its relationship with photosynthesis in a grass. J Exp Bot 59(12):3317–3325

    Article  MathSciNet  CAS  PubMed Central  PubMed  Google Scholar 

  • Yang Y, Guo Y (2018) Elucidating the molecular mechanisms mediating plant salt-stress responses. New Phytol 217(2):523–539

    Article  CAS  PubMed  Google Scholar 

  • Yousuf PY, Ahmad A, Ganie AH, Sareer O, Krishnapriya V, Aref IM, Iqbal M (2017) Antioxidant response and proteomic modulations in Indian mustard grown under salt stress. Plant Growth Regul 81:31–50

    Article  CAS  Google Scholar 

  • Zelitch I (1982) The close relationship between net photosynthesis and crop yield. Bioscience 32(10):796–802

    Article  Google Scholar 

Download references

Funding

The authors have not disclosed any funding.

Author information

Authors and Affiliations

Authors

Contributions

MIRK contributed to conceptualization; SK, MM, SK, NI and IW contributed to experimentation, data analysis and software; and SK, MM, SK and MIRK contributed to writing—original draft, review and editing. All authors have read and agreed to the published version of the manuscript.

Corresponding author

Correspondence to M. Iqbal R. Khan.

Ethics declarations

Competing interests

The authors declare no competing interests.

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 756 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Khatoon, S., Mahajan, M., Kumari, S. et al. Green-synthesized gold nanoparticles induce adaptation in photosynthetic responses, sugar and nitrogen metabolism, and seed yield of salt-stressed mustard plants. Clean Techn Environ Policy (2024). https://doi.org/10.1007/s10098-024-02761-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10098-024-02761-x

Keywords

Navigation