Skip to main content

Advertisement

Log in

A process integration approach for design of hybrid power systems with energy storage

  • Original Paper
  • Published:
Clean Technologies and Environmental Policy Aims and scope Submit manuscript

Abstract

Selection of energy storage technology in hybrid power systems (HPS) is vital due to the unique advantages and capabilities offered by different storage technologies. For an optimal operation, the efficient and economical storage system for an HPS should be selected. This work introduces a new systematic generic framework to determine the most cost-effective storage technology for an HPS. A Power Pinch Analysis tool called the AC/DC modified storage cascade table has been developed to optimise the HPS by considering various storage technologies. The economics of the various types of storage modes was analysed, taking into account the associated energy losses, among others. The method was applied to two case studies with different power trends to evaluate the effect of storage efficiencies and storage form on the performance of HPS. A superconducting magnetic storage system of 26.12 kWh capacity, that gives an investment payback period of 3.6 years, is the most cost-effective storage technology for the small-scale household system in Case Study 1. For the large-scale industrial application presented in Case Study 2, the Lead–Acid battery with a capacity of 15.38 MWh gives the lowest payback period (1.43 years).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Abbreviations

AC:

Alternating current

AEEND:

Available excess electricity for the next day

CAES:

Compressed air energy storage

CHP:

Combined heat and power

DC:

Direct current

DoD:

Depth of discharge

DRP:

Demand response programs

ESS:

Energy storage systems

FES:

Flywheel energy storage

HPS:

Hybrid power systems

MOES:

Minimum outsourced electricity supply

PCT:

Power cascade table

PoPA:

Power Pinch Analysis

PSO:

Particle swarm optimisation

PV:

Photovoltaic

RE:

Renewable energy

SCT:

Storage cascade table

SMES:

Superconducting magnetic energy storage

References

  • Badran O, Mamlook R, Abdulhadi E (2012) Toward clean environment: evaluation of solar electric power technologies using fuzzy logic. Clean Technol Environ Policy 14(2):357–367

    Article  Google Scholar 

  • Bandyopadhyay S (2013) 33 Applications of Pinch Analysis in the design of isolated energy systems. In: Klemeš JJ (ed) Handbook of Process Integration (PI). Woodhead Publishing, Cambridge, UK, pp 1038–1056. doi:10.1533/9780857097255.5.1038

    Chapter  Google Scholar 

  • Bayón L, Grau JM, Ruiz MM, Suárez PM (2013) Mathematical modelling of the combined optimization of a pumped-storage hydro-plant and a wind park. Math Comput Model 57(7–8):2024–2028

    Article  Google Scholar 

  • Bolund B, Bernhoff H, Leijon M (2007) Flywheel energy and power storage systems. Renew Sustain Energy Rev 11(2):235–258

    Article  Google Scholar 

  • Bradbury K (2010) Energy storage technology review. Duke University, Durham, North Carolina, USA

    Google Scholar 

  • Bureau of Energy Efficiency (2013) Electrical system. Ministry of Power, New Delhi, India

    Google Scholar 

  • Burger B, Ruther R (2005) Site-dependent system performance and optimal inverter sizing of grid-connected PV systems. In: Photovoltaic specialists conference, 2005. Conference record of the 31st IEEE, 3–7 Jan. 2005. p 1675

  • Chen H, Cong TN, Yang W, Tan C, Li Y, Ding Y (2009) Progress in electrical energy storage system: a critical review. Prog Nat Sci 19(3):291–312. doi:10.1016/j.pnsc.2008.07.014

    Article  CAS  Google Scholar 

  • Commission European (2000) Energy storage: a key technology for decentralised power, power quality and clean transport. Information Day on Non-Nuclear Energy RTD, Brussels, Belgium

    Google Scholar 

  • Crilly D, Zhelev T (2010) Further emissions and energy targeting: an application of CO2 emissions pinch analysis to the Irish electricity generation sector. Clean Technol Environ Policy 12(2):177–189

    Article  CAS  Google Scholar 

  • Díaz-González F, Sumper A, Gomis-Bellmunt O, Bianchi FD (2013) Energy management of flywheel-based energy storage device for wind power smoothing. Appl Energy 110:207–219. doi:10.1016/j.apenergy.2013.04.029

    Article  Google Scholar 

  • Elmegaard B, Brix W (2011) Efficiency of compressed air energy storage. DTU Technical University of Denmark, Lyngby, Denmark

    Google Scholar 

  • Esfahani IJ, Lee S, Yoo C (2015) Extended-power pinch analysis (EPoPA) for integration of renewable energy systems with battery/hydrogen storages. Renew Energy 80:1–14

    Article  Google Scholar 

  • Feroldi D, Degliuomini LN, Basualdo M (2013) Energy management of a hybrid system based on wind–solar power sources and bioethanol. Chem Eng Res and Des 91(8):1440–1455. doi:10.1016/j.cherd.2013.03.007

  • Ferreira HL, Garde R, Fulli G, Kling W, Lopes JP (2013) Characterisation of electrical energy storage technologies. Energy 53:288–298. doi:10.1016/j.energy.2013.02.037

    Article  Google Scholar 

  • Gonzalez A, Gallachóir B, McKeogh E, Lynch K (2004) Study of electricity storage technologies and their potential to address wind energy intermittency in Ireland. Sustainable Energy Ireland. UCC Sustainable Energy Research Group, Dublin, Ireland

    Google Scholar 

  • Guerrero-Lemus R, Martínez-Duart JM (2013) Electricity storage. In:  Renewable energies and CO2. Springer, London, pp 307–333

  • Hadjipaschalis I, Poullikkas A, Efthimiou V (2009) Overview of current and future energy storage technologies for electric power applications. Renew Sustain Energy Rev 13(6):1513–1522

    Article  Google Scholar 

  • Hartmann N, Vöhringer O, Kruck C, Eltrop L (2012) Simulation and analysis of different adiabatic compressed air energy storage plant configurations. Appl Energy 93:541–548

    Article  Google Scholar 

  • Hasan NS, Hassan MY, Majid MS, Rahman HA (2013) Review of storage schemes for wind energy systems. Renew Sustain Energy Rev 21:237–247

    Article  Google Scholar 

  • Hassenzahl W (1989) Superconducting magnetic energy storage. IEEE Trans Magn 25(2):750–758. doi:10.1109/20.92399

    Article  Google Scholar 

  • Hernandez-Torres D, Bridier L, David M, Lauret P, Ardiale T (2015) Technico-economical analysis of a hybrid wave power-air compression storage system. Renew Energy 74:708–717

    Article  Google Scholar 

  • Ho WS, Hashim H, Lim JS, Klemeš JJ (2013a) Combined design and load shifting for distributed energy system. Clean Technol Environ Policy 15(3):433–444. doi:10.1007/s10098-013-0617-3

    Article  Google Scholar 

  • Ho WS, Khor CS, Hashim H, Macchietto S, Klemeš JJ (2013b) SAHPPA: a novel power pinch analysis approach for the design of off-grid hybrid energy systems. Clean Technol Environ Policy 16(5):957–970

    Article  Google Scholar 

  • Hou Y, Vidu R, Stroeve P (2011) Solar energy storage methods. Ind Eng Chem Res 50(15):8954–8964. doi:10.1021/ie2003413

    Article  CAS  Google Scholar 

  • Ibrahim H, Ilinca A, Perron J (2008) Energy storage systems—characteristics and comparisons. Renew Sustain Energy Rev 12(5):1221–1250

    Article  CAS  Google Scholar 

  • International Electrotechnical Commission (2011) Electrical energy storage. IEC Market Strategy Board, Geneva, Switzerland

    Google Scholar 

  • Jentsch M, Trost T, Sterner M (2014) Optimal use of power-to-gas energy storage systems in an 85 % renewable energy scenario. Energy Procedia 46:254–261. doi:10.1016/j.egypro.2014.01.180

    Article  Google Scholar 

  • Jin JX, Chen XY (2012) Study on the SMES application solutions for smart grid. Phys Procedia 36:902–907

    Article  Google Scholar 

  • Klemeš JJ, Kravanja Z (2013) Forty years of heat Integration: pinch analysis (PA) and mathematical programming (MP). Curr Opin Chem Eng 2(4):461–474

    Article  Google Scholar 

  • Klemeš JJ, Varbanov PS, Kravanja Z (2013) Recent developments in process integration. Chem Eng Res Des 91(10):2037–2053

    Article  Google Scholar 

  • Komor P, Glassmire J (2012) Electricity storage and renewables for island power a guide for decision makers. International Renewable Energy Agency (IRENA), Bonn, Germany

    Google Scholar 

  • Liang J, Harley RG (2010) Pumped storage hydro-plant models for system transient and long-term dynamic studies. In: Power and energy society general meeting, 2010 IEEE, IEEE, p 1

  • Linnhoff B, Flower JR (1978) Synthesis of heat exchanger networks: i. systematic generation of energy optimal networks. AIChE J 24(4):633–642. doi:10.1002/aic.690240411

    Article  CAS  Google Scholar 

  • Long Z, Zhiping Q (2009) Review of Flywheel Energy Storage System. In: Goswami DY, Zhao Y (eds) Proceedings of ISES world congress 2007. Springer, Berlin, Germany, pp 2815–2819. doi:10.1007/978-3-540-75997-3_568

    Google Scholar 

  • Loughlin DH, Yelverton WH, Dodder RL, Miller CA (2013) Methodology for examining potential technology breakthroughs for mitigating CO2 and application to centralized solar photovoltaics. Clean Technol Environ Policy 15(1):9–20

    Article  CAS  Google Scholar 

  • Manolakos D, Papadakis G, Papantonis D, Kyritsis S (2004) A stand-alone photovoltaic power system for remote villages using pumped water energy storage. Energy 29(1):57–69. doi:10.1016/j.energy.2003.08.008

    Article  CAS  Google Scholar 

  • Marano V, Rizzo G, Tiano FA (2012) Application of dynamic programming to the optimal management of a hybrid power plant with wind turbines, photovoltaic panels and compressed air energy storage. Appl Energy 97:849–859. doi:10.1016/j.apenergy.2011.12.086

    Article  Google Scholar 

  • Masjuki H, Jahirul M, Saidur R, Rahim N, Mekhilef S, Ping H, Zamaluddin M (2006) Energy and electricity consumption analysis of malaysian industrial sector. Wood Wood Prod 331:8

    Google Scholar 

  • Mohammad Rozali NE, Alwi SRW, Manan ZA, Klemeš JJ, Hassan MY (2013a) Optimisation of pumped-hydro storage system for hybrid power system using power pinch analysis. Chem Eng Trans 35:85–90. doi:10.3303/CET1335014

    Google Scholar 

  • Mohammad Rozali NE, Wan Alwi SR, Abdul Manan Z, Klemeš JJ, Hassan MY (2013b) Process integration of hybrid power systems with energy losses considerations. Energy 55:38–45. doi:10.1016/j.energy.2013.02.053

    Article  Google Scholar 

  • Mohammad Rozali NE, Wan Alwi SR, Manan ZA, Klemeš JJ, Hassan MY (2013c) Process integration techniques for optimal design of hybrid power systems. Appl Therm Eng 61(1):26–35. doi:10.1016/j.applthermaleng.2012.12.038

    Article  Google Scholar 

  • Morandi A, Trevisani L, Negrini F, Ribani PL, Fabbri M (2012) Feasibility of superconducting magnetic energy storage on board of ground vehicles with present state-of-the-art superconductors. IEEE Trans Appl Supercond 22(2):5700106–5700106. doi:10.1109/tasc.2011.2177266

    Article  Google Scholar 

  • Mukhtaruddin RNSR, Rahman HA, Hassan MY, Jamian JJ (2015) Optimal hybrid renewable energy design in autonomous system using Iterative-Pareto-Fuzzy technique. Int J Electr Power Energy Syst 64:242–249. doi:10.1016/j.ijepes.2014.07.030

    Article  Google Scholar 

  • Notton G, Lazarov V, Stoyanov L (2011) Analysis of pumped hydroelectric storage for a wind/PV system for grid integration. Ecol Eng Environ Prot 32:64–73

    Google Scholar 

  • Nottrott A, Kleissl J, Washom B (2013) Energy dispatch schedule optimization and cost benefit analysis for grid-connected, photovoltaic-battery storage systems. Renew Energy 55:230–240

    Article  Google Scholar 

  • Ruddell A (2002) Investigation on storage technologies for intermittent renewable energies: evaluation and recommended R&D strategy. Chilton, Durham

    Google Scholar 

  • Schoenung SM, Hassenzahl W (2002) Long vs. short-term energy storage: sensitivity analysis. A study for the DOE energy storage systems program. Sandia report. SAND2007-4253. Unlimited release printed July. Sandia National Laboratories, Livermore

    Google Scholar 

  • Schoenung SM, Hassenzahl W (2003) Long-vs. short-term energy storage technologies analysis. A life-cycle cost study. A Study for the DOE Energy Storage Systems Program, Livermore

    Book  Google Scholar 

  • Schoppe C (2010) Wind and Pumped-Hydro Power Storage: Determining Optimal Commitment Policies with Knowledge Gradient Non-Parametric Estimation. Princeton University, USA

    Google Scholar 

  • Sebastián R, Peña Alzola R (2012) Flywheel energy storage systems: review and simulation for an isolated wind power system. Renew Sustain Energy Rev 16(9):6803–6813. doi:10.1016/j.rser.2012.08.008

    Article  Google Scholar 

  • Seider WD, Seader JD, Lewin DR, Widagdo S (2010) Product and process design principles: synthesis analysis and evaluation. Wiley, San Francisco, USA

    Google Scholar 

  • Sheikh MRI, Tamura J (2012) grid frequency mitigation using SMES of optimum power and energy storage capacity. In: Muyeen SM (ed) Wind energy conversion systems green energy and technology. Springer, London, UK, pp 337–363. doi:10.1007/978-1-4471-2201-2_14

    Chapter  Google Scholar 

  • Sreeraj ES, Chatterjee K, Bandyopadhyay S (2010) Design of isolated renewable hybrid power systems. Sol Energy 84(7):1124–1136. doi:10.1016/j.solener.2010.03.017

    Article  Google Scholar 

  • Sterner M (2014) Global energy transition based on renewables and new storage technologies. 9th Conference on sustainable development of energy, Water and environment systems, plenary lecture SDEWES2014-0608 www.mediterranean2014.sdewes.org. Accessed 9 Oct 2014

  • Succar S, Williams RH (2008) Compressed air energy storage: theory, resources, and applications for wind power. Princeton Environmental Institute Report 8, Princeton, USA

    Google Scholar 

  • Sundararagavan S, Baker E (2012) Evaluating energy storage technologies for wind power integration. Solar Energy 86(9):2707–2717

  • Tenaga Nasional Berhad (2014a) Industrial pricing & tariff. www.tnb.com.my/business/for-industrial/pricing-tariff.html. Accessed 13 Jan 2014

  • Tenaga Nasional Berhad (2014b) Residential pricing & tariff. www.tnb.com.my/residential/pricing-and-tariff/tariff-rates.html. Accessed 13 Jan 2014

  • The Arizona Research Institute for Solar Energy (2010) Study of compressed air energy storage with grid and photovoltaic energy generation. University of Arizona, Tucson, USA

    Google Scholar 

  • Wan Alwi SR, Mohammad Rozali NE, Abdul-Manan Z, Klemeš JJ (2012) A process integration targeting method for hybrid power systems. Energy 44(1):6–10

    Article  Google Scholar 

  • Wan Alwi SR, Ong ST, Mohammad Rozali NE, Manan ZA, Klemeš JJ (2013) New graphical tools for process changes via load shifting for hybrid power systems based on Power Pinch Analysis. Clean Technol Environ Policy 15(3):459–472. doi:10.1007/s10098-013-0605-7

    Article  Google Scholar 

  • Wilde D (2011) How can pumped-storage hydroelectric generators optimise plant operation in liberalised electricity markets with growing wind power integration?. University of Dundee, Scotland, UK

    Google Scholar 

  • Yang Z, Wang Z, Ran P, Li Z, Ni W (2014) Thermodynamic analysis of a hybrid thermal-compressed air energy storage system for the integration of wind power. Appl Therm Eng 66(1):519–527

    Article  Google Scholar 

  • Zhu J, Qiu M, Wei B, Zhang H, Lai X, Yuan W (2013) Design, dynamic simulation and construction of a hybrid HTS SMES (high-temperature superconducting magnetic energy storage systems) for Chinese power grid. Energy 51:184–192. doi:10.1016/j.energy.2012.09.044

    Article  Google Scholar 

Download references

Acknowledgments

This paper has been considerably extended from our earlier work’Optimisation of Pumped Hydro Storage System for Hybrid Power System Using PoPA (Mohammad Rozali et al. 2013a). The authors thank the MOHE (the Ministry of Higher Education Malaysia) and the UTM for providing the research funds for this project under the Vote No. Q.J130000.2544.03H44 and acknowledge the financial support of the Hungarian State and the European Union under the TAMOP-4.2.2.A-11/1/KONV-2012-0072 Design and optimisation of modernisation and efficient operation of energy supply and utilisation systems using renewable energy sources and ICTs.

Conflict of interest

This work has no potential conflicts of interest, and does not involve any human participant or animal. There is also no involvement or requirement for consent with other parties.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sharifah Rafidah Wan Alwi.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mohammad Rozali, N.E., Wan Alwi, S.R., Manan, Z.A. et al. A process integration approach for design of hybrid power systems with energy storage. Clean Techn Environ Policy 17, 2055–2072 (2015). https://doi.org/10.1007/s10098-015-0934-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10098-015-0934-9

Keywords

Navigation