Skip to main content

Grid Frequency Mitigation Using SMES of Optimum Power and Energy Storage Capacity

  • Chapter
  • First Online:
Wind Energy Conversion Systems

Part of the book series: Green Energy and Technology ((GREEN))

Abstract

Considering the viewpoint of cost-effectiveness, a computational method to determine the SMES power rating needed to minimize the grid frequency fluctuation is analyzed in this chapter. Moreover, the required minimum energy storage capacity of SMES unit is determined. Finally, simulation results using pulse width modulation (PWM) based voltage source converter (VSC) and two-quadrant DC–DC chopper-controlled SMES system are presented. It is seen that the proposed SMES system with required minimum energy storage capacity can significantly decrease the voltage and output power fluctuations of wind farm, which consequently mitigate the grid frequency fluctuation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. http://en.wikipedia.org/wiki/Energy_in_the_United_States

  2. Simoes MG, Farret FA (2004) Renewable energy system, design and analysis with induction generators. CRC Press, Washington, D.C

    Google Scholar 

  3. Heier S (1998) Grid integration of wind energy conversion systems. Wiley, Chicester, UK

    Google Scholar 

  4. http://www.olino.org/us/articles/category/wind-energy

  5. World Wind Energy Association; Available online in http://www.wwindea.org/home/index.php

  6. http://www.olino.org/us/articles/2009/12/03/technology-roadmap-wind-energy-iea

  7. Yamazaki T, Takahashi R, Murata T, Tamura J, Fukushima T, Sasano E, Shinya K, Matstumoto T (2009) Smoothing control of wind generator output fluctuations by new pitch controller. IEEJ Trans Power Energy 129(7):880–888

    Article  Google Scholar 

  8. Zhang L, Shen C, Crow ML, Dong L, Pekarek S, Atcitty S (2005) Performance indices for the dynamic performance of FACTS and FACTS with energy storage. Electr Power Compo Syst 33(3):299–314

    Article  Google Scholar 

  9. Boenig HJ, Hauer JF (1985) Commissioning tests of the Bonneville power administration 30 MJ superconducting magnetic energy storage unit. IEEE Trans Power Apparatus Syst 104(2):302–309 PAS

    Article  Google Scholar 

  10. Mitani Y, Tsuji K, Murakami Y (1988) Application of superconducting magnetic energy storage to improve power system dynamic performance. IEEE Trans Power Syst 3:1418–1425

    Article  Google Scholar 

  11. Banerjee S, Chatterjee JK, Tripathy SC (1990) Application of magnetic energy storage unit as load frequency stabilizer. IEEE Trans Energ Convers 5:46–51

    Article  Google Scholar 

  12. Wu CJ, Lee YS (1991) Application of superconducting magnetic energy storage unit to improve the damping of synchronous generator. IEEE Trans Energ Convers 6(4):573–578

    Article  MathSciNet  Google Scholar 

  13. Sheikh MRI, Muyeen SM, Takahashi R, Murata T, Tamura J (2010) Smoothing Control of Wind Generator Output Fluctuations by PWM Voltage Source Converter and Chopper Controlled SMES. European Transactions on Electrical Power, 21(1):1-18, Published online in Wiley InterScience (http://www.interscience.wiley.com). DOI: 10.1002/etep.469

    Google Scholar 

  14. Asao T, Takahashi R, Murata T, Tamura J, Kubo M, Kuwayama A, Matsumoto T (2007) Smoothing control of wind power generator output by superconducting magnetic energy storage system. ICEMS, Seoul, Korea, pp 302–307

    Google Scholar 

  15. PSCAD/EMTDC Manual (1994) Manitoba HVDC Research Center

    Google Scholar 

  16. IEEE task force on benchmark models for digital simulation of FACTS, custom–power controllers, T&D committee, (2006) Detailed modeling of superconducting magnetic energy storage (SMES) system. IEEE Trans Power Delivery 21(2):699–710

    Article  Google Scholar 

  17. Ali MH, Murata T, Tamura J (2008) Transient stability enhancement by fuzzy logic-controlled SMES considering coordination with optimal reclosing of circuit breakers. IEEE Trans Power Syst 23(2):631–640

    Article  Google Scholar 

  18. http://www.doc.ic.ac.uk/~matti/ise2grp/energystorage_report/node8.html

  19. http://en.wikipedia.org/wiki/Superconducting_magnetic_energy_storage

  20. Demiroren A, Yesil E (2004) Automatic generation control with fuzzy logic controllers in the power system including SMES units. Int J Electr Power Energ Syst 26:291–305

    Article  Google Scholar 

  21. IEE of Japan, Standard Models of Electrical Power System.Technical Reports, 754:40–43

    Google Scholar 

  22. Sheikh MRI, Muyeen SM, Takahashi R, Murata T, Tamura J (2008) Wind generator stabilization by PWM voltage source converter and chopper controlled SMES. J Int Rev Autom Control (I.RE.A.CO) 1(3):311–320

    Google Scholar 

  23. Working group on prime mover, energy supply models for system dynamic performance studies (1992) Hydraulic turbine and turbine control models for system dynamic studies. IEEE Trans Power Syst 7(1):167–179

    Google Scholar 

  24. Working group on prime mover, energy supply models for system dynamic performance studies (1991) Dynamic models for fossil fuelled steam units on power system studies. IEEE Trans Power Syst 6(2):753–761

    Article  Google Scholar 

  25. IEEE recommended practice for excitation system models for power system stability studies, IEEE Std. 421.5-1992

    Google Scholar 

  26. Koike T (1979) Electric power transmission and distribution. Youkendo. Co. Ltd, Tokyo, Japan

    Google Scholar 

  27. Sekine Y (1966) Power system engineering. Denkishoin. Co. Ltd, Tokyo

    Google Scholar 

  28. Sheikh MRI (2010) Stabilization of a grid-connected wind farm by using SMES. Ph.D. Thesis

    Google Scholar 

  29. Paatero JV, Lund PD (2005) Effect of energy storage on variations in wind power. Wind Energ 8:421–441

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. R. I. Sheikh .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag London Limited

About this chapter

Cite this chapter

Sheikh, M.R.I., Tamura, J. (2012). Grid Frequency Mitigation Using SMES of Optimum Power and Energy Storage Capacity. In: Muyeen, S. (eds) Wind Energy Conversion Systems. Green Energy and Technology. Springer, London. https://doi.org/10.1007/978-1-4471-2201-2_14

Download citation

  • DOI: https://doi.org/10.1007/978-1-4471-2201-2_14

  • Published:

  • Publisher Name: Springer, London

  • Print ISBN: 978-1-4471-2200-5

  • Online ISBN: 978-1-4471-2201-2

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics