Skip to main content
Log in

Perspective on pursuit of sustainability: challenges for engineering community

  • Perspective
  • Published:
Clean Technologies and Environmental Policy Aims and scope Submit manuscript

Abstract

Sustainability is a keyword commonly used by researchers and practitioners globally. However, even defining the goals of sustainability is fraught with difficulties and hence attaining it is nearly impossible. Since sustainability is a property of the entire system, engineering sustainability requires the boundaries of the system greatly expanded. The thinking of sustainability also brings in larger time scales. In this article, I present a perspective on journey toward sustainability using systems analysis approaches from various disciplines.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  • AIChE (1995) AIChE symposium series on pollution prevention through process and product modifications. American Institute of Chemical Engineers, New York, 90

  • Bakshi B, Fiksel J (2003) The quest for sustainability: challenges for process systems engineering. AIChE J 49:1350

    Article  CAS  Google Scholar 

  • Bare J (2014) Development of impact assessment methodologies for environmental sustainability. Clean Technol Environ Policy 16:681

    Article  Google Scholar 

  • Beloff B (2013) The case and practice for sustainability in business, metrics. In: Cabezas H, Diwekar U (eds) Sustainability: a multi-disciplinary perspective. Bentham e-books, Beijing, p 310

    Google Scholar 

  • Brans J, Vincke P (1985) A preference ranking organization method: the PROMETHEE method for multiple criteria decision making. Manag Sci 31(6):647–656

    Article  Google Scholar 

  • Cabezas H (2013) Sustainability Indicators and Metrics. In: Cabezas H, Diwekar U (eds) Sustainability: a multi-disciplinary perspective. Bentham e-books, Beijing, p 197

    Google Scholar 

  • Cabezas H, Bare J, Mallick S (1997) Pollution prevention with chemical process simulators: the generalized waste reduction (WAR) algorithm. Comp Che Eng 21:S305

    Article  CAS  Google Scholar 

  • Čuček L, Klemeš J, Varbanov P, Kravanja Z (2013) Dealing with high-dimensionality of criteria in multiobjective optimization of biomass energy supply network. Ind Eng Chem Res 52:7223

    Article  Google Scholar 

  • Diwekar U (2003) Greener by design. Environ Sci Technol 37:5432

    Article  CAS  Google Scholar 

  • Diwekar U (2005) From green process design to industrial ecology to sustainability. Resour Conserv Recycl 44:215

    Article  Google Scholar 

  • Diwekar U (2008) Introduction to applied optimization, 2nd edn. Springer, New York

    Book  Google Scholar 

  • Diwekar U, David A (2014) Better optimization of nonlinear uncertain systems (BONUS) algorithm with real world applications, (in press, to be published as optimization briefs by Springer)

  • Diwekar U, Shastri Y (2010) Green process design, green energy, and sustainability: a systems analysis perspective. Comput Chem Eng 34:1348

    Article  CAS  Google Scholar 

  • Diwekar U, Shastri Y (2011) Design for environment: a state-of-the-art review. Clean Technol Environ Policy 13:227

    Article  Google Scholar 

  • Diwekar U, Ulas S (2007) Sampling Techniques, Kirk-Othmer encyclopedia of chemical technology, vol 26. Wiley, New York, p 998 (Online Edition)

    Google Scholar 

  • Dorini G, Kapelan Z, Azapagic A (2011) Managing uncertainty in multiple-criteria decision making related to sustainability assessment. Clean Technol Environ Policy 13:133

    Article  Google Scholar 

  • Doshi R, Diwekar U, Benavides P, Yenkie K, Cabezas H (2015) Maximizing Sustainability of Ecosystem Model through Socio-Economic Policies Derived from Multivariable Optimal Control Theory. Clean Technol Environ Policy. doi:10.1007/s10098-014-0889-2

  • Ehrenfeld J, Gertler N (1997) Industrial Ecology in Practice: the Evolution of Interdependence at Kalundborg. J Ind Ecol 1(1):67

    Article  Google Scholar 

  • El-Halwagi M (2011) Sustainable design through process integration: fundamentals and applications to industrial pollution prevention, resource conservation, and profitability enhancement. Elsevier, Oxford

    Google Scholar 

  • Fu Y, Diwekar U (2004) An efficient sampling approach to multi-objective optimization. Ann Oper Res 132:109

    Article  Google Scholar 

  • Fu Y, Diwekar U, Young D, Cabezas H (2000) Process design for the environment: a multi-objective framework under uncertainty. Clean Prod Process 2:92

    Article  Google Scholar 

  • Gigerenzer G, Goldstein DG (2000) Reasoning the fast and frugal way: models of bounded rationality. In: Connolly T, Arkes HR, Hammond KR (eds) Judgement and decision making. Cambridge University Press, Cambridge, p 621

    Google Scholar 

  • Halfon E, Reggiani MG (1986) On ranking chemicals for environmental hazard. Environ Sci Technol 20:1173

    Article  CAS  Google Scholar 

  • Heberling M, Hopton M (2014) Assessing sustainability when data availability limits real-time estimates: using near-time indicators to extend sustainability metrics. Clean Technol Environ Policy 16:739

    Article  Google Scholar 

  • Hwang C, Yoon K (1981) Multiple attribute decision making: methods and applications. Springer, Berlin

    Book  Google Scholar 

  • Iman RL, Conover WJ (1982) Small sample sensitivity analysis techniques for computer models, with an application to risk assessment. Commun Stat A17:1749

    Google Scholar 

  • IPCC (2007) IPCC Fourth Assessment Report (http://www.ipcc.ch/publications_and_data/publications_ipcc_fourth_assessment_report_synthesis_report.htm)

  • Ito K (1951) On stochastic differential equations. Mem Am Math Soc 4:1

    Google Scholar 

  • Ito K (1974) On stochastic differentials. Appl Math Optim 4:374

    Google Scholar 

  • Kalagnanam J, Diwekar U (1997) An efficient sampling technique for off-line quality control. Ann Oper Res 38:308

    Google Scholar 

  • Kotecha P, Diwekar U, Cabezas H (2012) Model-based approach to study the impact of biofuels on the sustainability of an ecological system. Clean Technol Environ Policy 15:21

    Article  Google Scholar 

  • McKay MD, Beckman RJ, Conover WJ (1979) A comparison of three methods of selecting values of input variables in the analysis of output from a computer code. Technometrics 21:239

    Google Scholar 

  • Petrie J, Kempener R, Beck J (2013) Industrial ecology and sustainable development: dynamics, future uncertainty and distributed decision making. In: Cabezas H, Diwekar U (eds) Sustainability: a multi-disciplinary perspective. Bentham e-books, Beijing, p 243

    Google Scholar 

  • Roy B (1968) Classement et choix en presence de points devue multiples (la methode ELECTRE). Revue d’Informatique et de recherché opérationelle 6(8):57

    Google Scholar 

  • Saaty T (1980) The analytic hierarchy process. McGraw Hill, New York

    Google Scholar 

  • Sikdar S (2014) Macro, Meso & Micro aspects of sustainability, trans-atlantic research and development interchange on sustainability. TARDIS 2014, Estes Park, CO

    Google Scholar 

  • Singh S, Olugu E, Fallahpour A (2014) Fuzzy-based sustainable manufacturing assessment model for SMEs. Clean Technol Environ Policy 16:847

    Article  Google Scholar 

  • Smith R, Ruiz-Mercado G (2014) A method for decision making using sustainability indicators. Clean Technol Environ Policy 16:749

    Article  Google Scholar 

  • Vinodh S (2011) Assessment of sustainability using multi-grade fuzzy approach. Clean Technol Environ Policy 13:509

    Article  Google Scholar 

  • Vinodh S, Joy D (2012) Structural equation modeling of sustainable manufacturing practices. Clean Technol Environ Policy 14:79

    Article  Google Scholar 

  • Wang R, Diwekar U, Gregoire-Padro C (2004) Latin hypercube hammersley sampling for risk and uncertainty analysis. Environ Prog 23:141

    Article  CAS  Google Scholar 

  • WCED World Commission on Environment and Development (1987) Our Common Future. Oxford University Press, Oxford

    Google Scholar 

  • White A (1994) Preface. In: The greening of industrial ecosystems, National Academy of Engineers, 549 National Academy Press, Washington, DC

  • Wille R (1982) Restructuring lattice theory: an approach based on hierarchies of concepts. In: Rival I (ed) Ordered set. Reidel, Dordrecht-Boston

    Google Scholar 

  • Zeleny M (1973) Compromise programming. In: Cochrane J, Zeleny M (eds) Multiple criteria decision making. University of South Carolina Press, Columbia

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Urmila Diwekar.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Diwekar, U. Perspective on pursuit of sustainability: challenges for engineering community. Clean Techn Environ Policy 17, 1729–1741 (2015). https://doi.org/10.1007/s10098-015-0915-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10098-015-0915-z

Keywords

Navigation