Skip to main content

Advertisement

Log in

Development of impact assessment methodologies for environmental sustainability

  • Original Paper
  • Published:
Clean Technologies and Environmental Policy Aims and scope Submit manuscript

Abstract

Despite years of discussion on the merits of sustainability, there is still no consensus on how to determine if environmental sustainability is achieved or even if progress is made. The Brundtland Commission statement that sustainability “meets the needs of the present without compromising the ability of future generations to meet their own needs (World Commission on Environment and Development, Our common future, Oxford University Press, New York, 1987)” establishes the long-term focus of sustainability goals. Impact categories, such as land and water use, that can cause large spatial and long-temporal scale impacts are important for sustainability assessments, and may require detailed spatial analysis to capture all the important input parameters. Environmental sustainability impact assessments can use life cycle impact assessment methodologies, but can also be supplemented with impact assessments conducted from a variety of perspectives. Having this flexibility of perspective can allow more detailed site-specific assessments that may represent unsustainable situations. While it is necessary to provide decision support with a comprehensive assessment, aggregation of impact categories has the disadvantage of obscuring the individual vulnerabilities of each impact category, which can be critically important to the overall sustainability picture. An outline of a sustainability assessment case study focused on biomass-based alternatives required under the renewable fuel standard will be provided to demonstrate a more comprehensive view of sustainability.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Anton A, Castells F, Montero JI (2007) Land use indicators in life cycle assessment. Case study: the environmental impact of Mediterranean greenhouses. J Clean Prod 15(5):432–438

    Article  Google Scholar 

  • Baitz M, Kreissig J, Wolf M (2000) Method for integrating land use into life-cycle-assessment (LCA). Forstwissenschaftliches Centralblatt 119(3):128–149

    Article  Google Scholar 

  • Bare J (2009) Life cycle impact assessment research developments and needs. Clean Technol Environ Policy, accepted Nov 7

  • Bare JC (2011) Recommendation for land use impact assessment: first steps into framework, theory, and implementation. Clean Technol Environ Policy 13(1):7

    Article  Google Scholar 

  • Bare JC, Gloria TP (2006) Critical analysis of the mathematical relationships and comprehensiveness of life cycle impact assessment approaches. Environ Sci Technol 40(4):1104–1113

    Article  CAS  Google Scholar 

  • Bare JC, Gloria TP (2008) Environmental impact assessment taxonomy providing comprehensive coverage of midpoints, endpoints, damages, and areas of protection. J Clean Prod 16(10):1021–1035

    Article  Google Scholar 

  • Bare JC, Udo de Haes HA, Pennington DW (1999) Life cycle impact assessment sophistication. Int J Life Cycle Assess 4(5):299–306

    Article  Google Scholar 

  • Bare JC, Hofstetter P, Pennington DW, Udo de Haes HA (2000a) Life cycle impact assessment midpoints versus endpoints: the sacrifices and the benefits. Int J Life Cycle Assess 5(6):319–326

    Article  Google Scholar 

  • Bare JC, Pennington DW, de Udo Haes HA (2000b) An international workshop on life cycle impact assessment sophistication. U.S. Environmental Protection Agency, Cincinnati EPA/600/R-00/023

    Google Scholar 

  • Bare JC, Norris GA, Pennington DW, McKone T (2003) TRACI—the tool for the reduction and assessment of chemical and other environmental impacts. J Ind Ecol 6(3):49–78

    Google Scholar 

  • Barnthouse L, Fava J, Humphreys K, Hunt R, Laibson L, Noesen S, Norris G, Owens J, Todd J, Vigon B, Weitz K, Young J (1997) Life-cycle impact assessment: the state of the art. Pensacola, FL

    Google Scholar 

  • Bernesson S, Nilsson D, Hansson PA (2006) A limited LCA comparing large- and small-scale production of ethanol for heavy engines under Swedish conditions. Biomass Bioenergy 30(1):46–57

    Article  CAS  Google Scholar 

  • Boumans R, Costanza R (2007) In multiscale integrated modeling of ecosystem services (MIMES), Ecosystem Services Program Seminar Series

  • Boumans R, Costanza R, Farley J, Wilson MA, Portela R, Rotmans J, Villa F, Grasso M (2002) Modeling the dynamics of the integrated earth system and the value of global ecosystem services using the GUMBO model. Ecol Econ 41:529–560

    Article  Google Scholar 

  • Chapagain AK; Hoekstra AYA (2004) Water Footprints of Nations 1

  • Chiu Y-W, Walseth B, Suh S (2009) Water embodied in bioethanol in the United States. Environ Sci Technol 43:2688–2692

    Article  CAS  Google Scholar 

  • Costanza R, Fisher B, Mulder K, Liu S, Christopher T (2007) Biodiversity and ecosystem services: a multi-scale empirical study of the relationship between species richness and net primary production. Ecol Econ 61(2–3):478–491

    Article  Google Scholar 

  • Daily GC, Matson PA (2008) Ecosystem services: from theory to implementation. Proc Natl Acad Sci 105(28):9455–9456

    Article  CAS  Google Scholar 

  • Daily GC, Polasky S, Goldstein J, Kareiva PM, Mooney HA, Pejchar L, Ricketts TH, Salzman J, Shallenberger R (2009) Ecosystem services in decision making: time to deliver. Front Ecol Environ 7(1):21–28

    Article  Google Scholar 

  • de Udo Haes HA (2003) The UNEP/SETAC life cycle initiative—A personal view of the results after one year. Int J Life Cycle Assess 8(5):307–309

    Article  Google Scholar 

  • de Udo Haes H, Finnveden G, Goedkoop M, Hauschild M, Hertwich E, Hofstetter P, Jolliet O, Klopffer W, Krewitt W, Lindeijer E, Muller-Wenk R, Olsen S, Pennington D, Potting J, Steen B (2002) Life-cycle impact assessment: striving towards best practice. SETAC Press, Brussels

    Google Scholar 

  • Ecoworld, Is biofuel water-positive? Ecoworld 2010

  • Energy Information Administration—U.S. Department of Energy, Annual Energy Review 2009 Report No. DOE/EIA-0384 Table 10.3 Fuel Ethanol Overview, 1981–2009. 2009

  • Fava J, Denison R, Jones B, Curran M, Vigon B, Selke S, Barnum J (1991) A technical framework for life-cycle assessment. SETAC, Pensacola

    Google Scholar 

  • Fava J, Consoli F, Denison R, Dickson K, Mohin T, Vigon B (1993) A conceptual framework for life-cycle impact assessment. SETAC Press, Pensacola

    Google Scholar 

  • Fava J, Jensen A, Lindfors L, Pomper S, Smet BD, Warren J, Vigon B (1994) Life-cycle assessment data quality: a conceptual framework. SETAC Press, Pensacola

    Google Scholar 

  • Federal Register: June 24, Vol No. 120, Regulation of fuels and fuel additivies: modifications to renewable fuel standard program requirements. 2009

  • Friedman TL (2005) The world is flat—a brief history of the twenty-first century. Farrar, Straus and Giroux, New York

    Google Scholar 

  • Friedman TL (2008) Hot, flat, and crowded: why we need a green revolution—and how it can renew America. Farrar, Straus and Giroux, New York

    Google Scholar 

  • Fu GZ, Chan AW, Minns DE (2003) Life cycle assessment of bio-ethanol derived from cellulose. Int J Life Cycle Assess 8(3):137–141

    Article  CAS  Google Scholar 

  • Gloria TP, Lippiatt BC, Cooper J (2007) Life cycle impact assessment weights to support environmentally preferable purchasing in the United States. Environ Sci Technol 41(21):7551–7557

    Article  CAS  Google Scholar 

  • Goedkoop M, Spriensma R (1999) The eco-indicator 99: a damage orientated method for life cycle impact assessment. DGM, The Hague

    Google Scholar 

  • Halleux H, Lassaux S, Renzoni R, Germain A (2008) Comparative life cycle assessment of two biofuels ethanol from sugar beet and rapeseed methyl ester. Int J Life Cycle Assess 13(3):184–190

    Article  CAS  Google Scholar 

  • Heijungs R, Guinée JB, Huppes G, Lankreijer RM, Udo De Haes HA, Wegener Sleeswijk A, Ansems AMM, Eggels PG, van Duin R, de Goede HP (1992a) Environmental life cycle assessment of products: guide and backgrounds (Part 1). CML, Leiden

    Google Scholar 

  • Heijungs R, Guinée JB, Huppes G, Lankreijer RM, Udo De Haes HA, Wegener Sleeswijk A, Ansems AMM, Eggels PG, van Duin R, de Goede HP (1992b) Environmental life cycle assessment of products: guide and backgrounds (Part 2). CML, Leiden

    Google Scholar 

  • Heijungs R, Guinée J, Huppes G (1997) Impact categories for natural resources and land use. CML Report 138—section substances and products. Centre of Environmental Science (CML), Leiden University, Leiden

    Google Scholar 

  • Hertwich EG (2005) Life cycle approaches to sustainable consumption: a critical review. Environ Sci Technol 39(13):4673–4684

    Article  CAS  Google Scholar 

  • Hertwich, E., Value Judgements and the Public Right—Rebuttal to Marsmann et al. on ISO 14042. Inter J Life Cycle Assess 1999, Gate to EHS: Global LCA Village

  • Hertwich EG, Hammitt JK (2001a) A decision-analytic framework for impact assessment—part 2: midpoints, endpoints, and criteria for method development. Int J Life Cycle Assess 6(5):265–272

    Article  CAS  Google Scholar 

  • Hertwich EG, Hammitt JK (2001b) A decision-analytic framework for impact assessment—Part I: LCA and decision analysis. Int J Life Cycle Assess 6(1):5–12

    Article  CAS  Google Scholar 

  • Hertwich E, Pease W (1998) ISO 14042 restricts use and development of impact assessment. Int J Life Cycle Assess 3(4):180–181

    Article  Google Scholar 

  • Hertwich E, McKone T, Pease W (1999) Parameter uncertainty and variability in evaluative fate and exposure models. Risk Anal 19:1193–1204

    CAS  Google Scholar 

  • Hertwich EG, McKone TE, Pease WS (2000) A systematic uncertainty analysis of an evaluative fate and exposure model. Risk Anal 20(4):439–454

    Article  CAS  Google Scholar 

  • Hertwich EG, Pennington DW, Bare JC (2002) Climate change, stratospheric ozone depletion, photooxidant formation, acidifi-cation, and eutrophication. In: de Udo Haes HA, Finnveden G, Goedkoop M, Hauschild M, Hertwich EG, Hofstetter P, Jolliet O, Klopffer W, Krewitt W, Lindeijer EW, Muller-Wenk R, Olsen SI, Pennington DW, Potting J, Steen B (eds) Life cycle impact assessment: striving towards best available practice. SETAC, Pensacola

    Google Scholar 

  • Hertwich E, van der Voet E, Suh S, Tukker A (2010) Assessing the environmental impacts of consumption and production: priority products and materials. In UNEP (United Nations Environmental Programme) International Panel for Sustainable Resource Management, Ed. UNEP, Paris

  • Hoekstra AY, Chapagain AK (2008) Globalization of water: sharing the planet’s freshwater resources. Blackwell Publishing, Oxford

    Google Scholar 

  • Hoekstra AY, Chapagain AK, Aldaya MM, Mekonnen MM (2009a) Water footprint manual: state of the art 2009. Water Footprint Network, Enschede

    Google Scholar 

  • Hoekstra AY, Gerbens-Leenes W, Van der Meer TH (2009b) Water footprint accounting, impact assessment, and life-cycle assessment. Proc Natl Acad Sci 106(40):E114

    Article  CAS  Google Scholar 

  • Hofstetter P, Bare JC, Hammitt JK, Murphy PA, Rice GE (2002) Tools for the comparative analysis of alternatives: competing or complementary perspectives? Risk Anal 22(5):833–851

    Article  Google Scholar 

  • Houghton JT, Filho LGM, Bruce JP, Lee H, Callander A, Haites EF (1995) Climate change 1994: radiative forcing of climate change and an evaluation of the IPCC 1992 IS92 emission scenarios. Cambridge University Press, New York

    Google Scholar 

  • International Standards Organization, Environmental management—life cycle assessment—life cycle impact assessment (International Standard ISO14042:2000(E)). 2000

  • IPCC (Intergovernmental Panel on Climate Change) (1996) Climate change 1995: the science of climate change. Intergovernmental Panel on Climate Change, Cambridge

    Google Scholar 

  • IPCC (Intergovernmental Panel on Climate Change) (2001a) Climate Change 2001: The scientific basis: contribution of working group I to the third assessment report of the intergovernmental panel on climate change. Cambridge University Press, Cambridge

    Google Scholar 

  • IPCC (Intergovernmental Panel on Climate Change) (2001b) Climate change 2001: the scientific basis: contribution of working group i to the third assessment report of the intergovernmental panel on climate change. Table 6.7 and Table 6.8. Cambridge University Press, Cambridge

    Google Scholar 

  • IPCC (Intergovernmental Panel on Climate Change) Special Report on Safeguarding the Ozone Layer and the Global Climate System: Issues Related to Hydrofluorocarbons and Perfluorocarbons, Special Report of the Intergovernmental Panel on Climate Change, Cambridge, 2005

  • Jolliet O, Müller-Wenk R, Bare J, Brent A, Goedkoop M, Heijungs R, Itsubo N, Peña C, Potting J, Pennington D, Rebitzer G, Schenck R, Stewart M, Udo de Haes H, Weidema B (2004) The LCIA midpoint-damage framework of the UNEP-SETAC Life Cycle Initiative. Int J LCA 9(6):394–404

    Article  Google Scholar 

  • Jolliet O, Dubreuil A, Gloria T, Hauschild M (2005) Progresses in life cycle impact assessment within the UNEP/SETAC life cycle initiative. Int J Life Cycle Assess 10(6):447–448

    Article  Google Scholar 

  • Kadam KL (2002) Environmental benefits on a life cycle basis of using bagasse-derived ethanol as a gasoline oxygenate in India. Energy Policy 30(5):371–384

    Article  Google Scholar 

  • Kemppainen AJ, Shonnard DR (2005) Comparative life-cycle assessments for biomass-to-ethanol production from different regional feedstocks. Biotechnol Prog 21(4):1075–1084

    Article  CAS  Google Scholar 

  • Kim S, Dale BE (2005) Life cycle assessment of various cropping systems utilized for producing biofuels: bioethanol and biodiesel. Biomass Bioenergy 29(6):426–439

    Article  Google Scholar 

  • Kim S, Dale BE (2009) Regional variations in greenhouse gas emissions of biobased products in the United States—corn-based ethanol and soybean oil. Int J Life Cycle Assess 14(6):540–546

    Article  Google Scholar 

  • Klopffer W (2006) The role of SETAC in the development of LCA. Int J Life Cycle Assess 11:116–122

    Article  Google Scholar 

  • Koellner T (2002) Land use in product life cycles and its consequences for ecosystem quality. Int J Life Cycle Assess 7(2):130

    Article  Google Scholar 

  • Koellner T, Scholz RW (2007) Assessment of land use impacts on the natural environment - Part 1: an analytical framework for pure land occupation and land use change. Int J Life Cycle Assess 12(1):16–23

    Article  Google Scholar 

  • Koellner T, Scholz RW (2008) Assessment of land use impacts on the natural environment—Part 2: generic characterization factors for local species diversity in central Europe. Int J Life Cycle Assess 13(1):32–48

    Google Scholar 

  • Lindeijer E (2000) Review of land use impact methodologies. J Clean Prod 8(4):273–281

    Article  Google Scholar 

  • Lindeijer E, Alfers A (2001) Summary of step a of the delfts cluster research programme on land use in LCA. Int J LCA 6(3):186

    Article  Google Scholar 

  • Lindeijer E, Kampen M, Fraanje P (1998) Biodiversity and life support indicators for land use impacts in LCA, W-DWW-98-059; IVAM and IBN/DLO

  • Lindeijer E, Muller-Wenk R, Steen B (2002) Impact assessment of resources and land use. In: de Udo Haes HAG, Finnveden M, Goedkoop M, Hauschild EG, Hertwich P, Steen (eds) Life cycle impact assessment: striving towards best available practice. SETAC, Pensacola

    Google Scholar 

  • Margni M, Gloria T, Bare J, Seppälä J, Steen B, Struijs J, Toffoletto L, Jolliet O (2007) Guidance on how to move from current practice to recommended practice in life cycle impact assessment. In: UNEP/SETAC Life Cycle Initiative (ed) Task force 1 of the UNEP/SETAC life cycle initiative. Design, Sustainable Developement, Environment, Paris

    Google Scholar 

  • Margni M, Gloria T, Bare J, Seppälä J, Steen B, Struijs J, Toffoletto L, Jolliet O (2008) Evaluation of category indicators and characterization models: Application to eutrophication. In Task Force 1 of the UNEP SETAC life cycle initiative

  • Marsmann M, Olaf Ryding S, Udo de Haes H, Fava J, Owens W, Brady K, Saur K, Schenck R, Letters to the Editor—In reply to Hertwich & Pease, Int. J. LCA 3 (4) 180–181, “ISO 14042 restricts use and development of impact assessment. Inter J Life Cycle Assess 1999, 4 (2), 65

    Google Scholar 

  • Michelsen O (2008) Assessment of land use impact on biodiversity—proposal of a new methodology exemplified with forestry operations in Norway. Int J Life Cycle Assess 13(1):22–31

    Google Scholar 

  • Mila i Canals L, Clift R, Basson L, Hansen Y, Brandao M (2006) Expert workshop on land use impacts in life cycle assessment (LCA). Int J Life Cycle Assess 11(5):363–368

    Article  Google Scholar 

  • Mila i Canals L, Bauer C, Depestele J, Dubreuil A, Knuchel RF, Gaillard G, Michelsen O, Muller-Wenk R, Rydgren B (2007a) Key elements in a framework for land use impact assessment within LCA. Int J Life Cycle Assess 12(1):5–15

    Article  Google Scholar 

  • Mila i Canals L, Romanya J, Cowell SJ (2007b) Method for assessing impacts on life support functions (LSF) related to the use of ‘fertile land’ in life cycle assessment (LCA). J Clean Prod 15(15):1426–1440

    Article  Google Scholar 

  • Millennium ecosystem assessment board ecosystems and human well-being: a report of the millennium ecosystem assessment; World Resources Institute: Washington, 2005

  • Naidoo R, Balmford A, Costanza R, Fisher B, Green R, Lehner B, Malcolm T, Ricketts T (2008) Global mapping of ecosystem services and conservation priorities. Proc Natl Acad Sci 105(28):9495–9500

    Article  CAS  Google Scholar 

  • Nelson E, Mendoza G, Regetz J, Polasky S, Tallis H, Cameron DR, Chan KMA, Daily GC, Goldstein J, Kareiva PM, Lonsdorf E, Naidoo R, Ricketts TH, Shaw MR (2009) Modeling multiple ecosystem services, biodiversity conservation, commodity production, and tradeoffs at landscape scales. Front Ecol Environ 7(1):4–11

    Article  Google Scholar 

  • Nguyen TLT, Gheewala SH (2008) Life cycle assessment of fuel ethanol from Cassava in Thailand. Int J Life Cycle Assess 13(2):147–154

    Article  CAS  Google Scholar 

  • Owens J (1997) Life cycle assessment: constraints on moving from inventory to impact assessment. J Ind Ecol 1(1):37–49

    Article  Google Scholar 

  • Pereira HM, Daily GC (2006) Modeling biodiversity dynamics in countryside landscapes. Ecology 87:1877–1885

    Article  Google Scholar 

  • Ricketts T; Ennaanay D, InVEST: a tool for mapping and valuing hydrological and other ecosystem services. In US EPA webinar for Ecosystem Services Program, 2009

  • Rosenbaum R, Bachmann T, Huijbregts M, Jolliet O, Juraske R, Koehler A, Larsen H, MacLeod M, Margni M, McKone T, Payet J, Schuhmacher M, van de Meent D, Hauschild M (2008) USEtox—The UNEP-SETAC toxicity model: recommended characterisation factors for human toxicity and freshwater ecotoxicity. Int J Life Cycle Assess 7:532–546

    Article  Google Scholar 

  • Schmidt JH (2008) Development of LCIA characterisation factors for land use impacts on biodiversity. J Clean Prod 16(18):1929–1942

    Article  Google Scholar 

  • Shapouri H, Duffield N, Wang M (2008) The energy balance of corn ethanol: an update. USDA, Washington, p 20

    Google Scholar 

  • Solomon S, Qin D, Manning M, Alley RB, Berntsen T, Bindoff NL, Chen Z, Chidthaisong A, Gregory JM, Hegerl GC, Heimann M, Hewitson B, Hoskins BJ, Joos F, Jouzel J, Kattsov V, Lohmann U, Matsuno T, Molina M, Nicholls N, Overpeck J, Raga G, Ramaswamy V, Ren J, Rusticucci M, Somerville R, Stocker TF, Whetton P, Wood RA, Wratt D (2007) Technical Summary. In: climate change 2007: the physical science basis. contribution of working group I to the fourth assessment report of the intergovernmental panel on climate change. Cambridge University Press, Cambridge, pp 33–34

    Google Scholar 

  • Spitzley DV, Tolle DA (2008) Evaluating land-use impacts: selection of surface area metrics for life-cycle assessment of mining. J Ind Ecol 8(1–2):11–12

    Article  Google Scholar 

  • Stromman AH, Peters GP, Hertwich EG (2009) Approaches to correct for double counting in tiered hybrid life cycle inventories. J Clean Prod 17(2):248–254

    Article  Google Scholar 

  • Swan G (1998) Evaluation of land use in life cycle assessment. Chalmers University of Technology Center for Environmental Assessment of Product and Material Systems (CPM), Goteborg Report 1998:2

    Google Scholar 

  • Tallis H, Ricketts T, Guerry A, Nelson E, Ennaanay D, Wolny S, Olwero N, Vigerstol K, Pennington D, Mendoza G, Aukema J, Foster J, Forrest J, Cameron D, Lonsdorf E, Kennedy C, Verutes G, Kim CK, Guannel G., Papernfus M, Toft J, Marsik, M, Bernhardt J, InVEST 2.0 Beta User’s Guide: Integrated Valuation of Ecosystem Services and Tradeoffs—The Natural Capital Project Stanford: 2011

  • Tallis HT; Ricketts T; Nelson E; Vigerstol K; Mendoza G, Wolny S; Olwero N, Aukema J, Foster J, Forrest J, Cameron DR (2008) InVEST 1.0 beta User’s Guide. The Natural Capital Project. Stanford

  • Turner RK, Daily GC (2008) The Ecosystem services framework and natural capital conservation. Environ Res Econ 39:25–35

    Article  Google Scholar 

  • Udo de Haes HA (1996) Towards a methodology for life cycle impact assessment. Society of Environmental Toxicology and Chemistry, Brussels

    Google Scholar 

  • Udo de Haes HA (1998) ISO’s compromise on comparative assertions in life cycle impact assessment. J Ind Ecol 2(3):4–7

    Article  Google Scholar 

  • Udo de Haes HA (2006) How to approach land use in LCIA or, how to avoid the Cinderella effect? Int J LCA 11(4):219–221

    Article  Google Scholar 

  • UNFCCC: The United Nations Framework Convention on Climate Change, Review of the Implementation of Commitments and of other Provisions of the Convention, National Communications: Greenhouse Gas Inventories from Parties Included in Annex 1 to the Convention, UNFCCC Guidelines on Reporting and Review. Table 1: 1995 IPCC global warming potential (GWP) values based on the effects of greenhouse gases over a 100-year time horizon. As provided by the IPCC in its Second Assessment Report. In 2000; p 14

  • United Nations Environment Programme (UNEP)/Society of Environmental Toxicology and Chemistry (SETAC) International Life Cycle Panel, 2008

  • United Nations General Assembly (2002) World summit on sustainable development: plan of implementation. In United Nations Division for Sustainable Development, New York

    Google Scholar 

  • US Department of Energy—energy efficiency and renewable energy, EPA’s proposed renewable fuel standard tackles GHG Emissions. EERE network news 2009

  • US Government, Energy Independence and Security Act of 2007—Public Law 110-140-Dec. 19. In 2007

  • US Environmental Protection Agency—Office of transportation and air quality—assessment and standards division, draft regulatory impact analysis: changes to renewable fuel standard program. In 2009

  • Vogtlander JG, Lindeijer E, Witte JPM, Hendriks C (2004) Characterizing the change of land-use based on flora: application for EIA and LCA. J Clean Prod 12(1):47–57

    Article  Google Scholar 

  • Wagendorp T, Gulinck H, Coppin P, Muys B (2006) Land use impact evaluation in life cycle assessment based on ecosystem thermodynamics. Energy 31(1):112–125

    Article  Google Scholar 

  • WMO (World Meteorological Organization), Scientific Assessment of Ozone Depletion: 1998. Global Ozone Research and Monitoring Project—Report No. 44. In Geneva, Switzerland, 1999

  • WMO (World Meteorological Organization), Scientific Assessment of Ozone Depletion: 2002, Global Ozone Research and Monitoring Project—Report No. 47. In Geneva, Switzerland, 2003; pp 498, Table 1.6–1.7

  • WMO (World Meteorological Organization), Scientific Assessment of Ozone Depletion: 2006, Global Ozone Research and Monitoring Project—Report No. 50. In Geneva, Switzerland, 2007; p 572

  • World Commission on Environment and Development (1987) Our common future. Oxford University Press, New York

    Google Scholar 

  • Wurtenberger L, Koellner T, Binder CR (2006) Virtual land use and agricultural trade: estimating environmental and socio-economic impacts. Ecol Econ 57(4):679–697

    Article  Google Scholar 

  • Yu SR, Tao J (2008) Life cycle simulation-based economic and risk assessment of biomass-based fuel ethanol (BFE) projects in different feedstock planting areas. Energy 33(3):375–384

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jane C. Bare.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bare, J.C. Development of impact assessment methodologies for environmental sustainability. Clean Techn Environ Policy 16, 681–690 (2014). https://doi.org/10.1007/s10098-013-0685-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10098-013-0685-4

Keywords

Navigation