Skip to main content
Log in

Comparative studies of immobilized lipase- and acid-catalyzed fatty acid methyl ester synthesis for seed lipid analysis

  • Published:
Food Science and Biotechnology Aims and scope Submit manuscript

Abstract

Fatty acids are one of the most important nutrients in food. Acid- or base-catalyzed transesterification methods are commonly used for the analysis of fatty acids. However, several drawbacks were reported for these methods, including the isomerization and degradation of fatty acids. Lipase-catalyzed reactions are usually undertaken at mild conditions, preventing such problems. In this study, commercial resin-bound lipase from Candida antartica was tested for possible application in fatty acid methyl ester analysis. Experimental parameters, including temperature, reaction time, and re-cycling were evaluated. The optimized condition was (5-10 mg lipid, 0.5 mL of MeOH, and 50 mg Novozyme 435 in 2 mL toluene, 80°C for 1 h). In optimized condition, the lipase-catalyzed methods yielded similar results with the chemical method. In overall, lipase-catalyzed transesterification can be a useful alternative to acid-catalyzed methods for fatty acid analysis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Spitzer V. Screening analysis of unknown seed oils. Lipids 101: 2–19 (1999)

    Article  CAS  Google Scholar 

  2. Hong SS, Lee JH, Jeong W, Kim N, Jin HZ, Hwang BY, Lee HJ, Lee SJ, Jang DS, Lee D. Acetylenic acid analogues from the edible mushroom Chanterelle (Cantharellus cibarius) and their effects on the gene expression of peroxisome proliferator-activated receptor-gamma target genes. Bioorg. Med. Chem. Lett. 22: 2347–2349 (2012)

    Article  CAS  Google Scholar 

  3. Ames BN. Dietary carcinogens and anticarcinogens. oxygen radicals and degenerative diseases. Science 221: 1256–1264 (1983)

    CAS  Google Scholar 

  4. Ruiz-Rodriguez A, Reglero G, Ibanez E. Recent trends in the advanced analysis of bioactive fatty acids. J. Pharmaceut. Biomed. 51: 305–326 (2010)

    Article  CAS  Google Scholar 

  5. Ruiz-Jiménez J, Priego-Capote F, Luque de Castro MD. Identification and quantification of trans fatty acids in bakery products by gas chromatographymass spectrometry after dynamic ultrasound-assisted extraction. J. Chromatogr. A 1045: 203–210 (2007)

    Article  Google Scholar 

  6. Kim BH, Lumor SE, Akoh CC. Trans-free margarines prepared with canola oil/ palm stearin/palm kernel oil-basedstructured lipids. J. Agr. Food Chem. 56: 8195–8205 (2008)

    Article  CAS  Google Scholar 

  7. Golay P, Dionisi F, Hug B, Giuffrida F, Destaillats F. Direct quantification of fatty acids in dairy powders with special emphasis on trans fatty acid content. Food Chem. 101: 1115–1120 (2006)

    Article  Google Scholar 

  8. Rinehart KL, Goldberg SI, Tarimu CL, Culbertson TP. Cyclopropene rearrangement in the polymerization of sterculic acid. J. Am. Chem. Soc. 83: 225–231 (1961)

    Article  CAS  Google Scholar 

  9. Akoh CC, Chang SW, Lee GC, Shaw JF. Biocatalysis for the production of industrial products and functional foods from rice and other agricultural produce. J. Agr. Food Chem. 56: 10445–10451 (2008)

    Article  CAS  Google Scholar 

  10. Hasan F, Shah AA, Hameed A. Industrial applications of microbial lipases. Enzyme Microb. Tech. 39: 235–251 (2006)

    Article  CAS  Google Scholar 

  11. Zamost BL, Nielsen HK, Starnes RL. Thermostable enzymes for industrial applications. J. Ind. Microbiol. 8: 71–82 (1991)

    Article  CAS  Google Scholar 

  12. Anderson EM, Larsson KM, Kirk O. One biocatalyst-many applications: The use of Candida antarctica B-lipase in organic synthesis. Biocatal. Biotransfor. 16: 181–204 (1998)

    Article  CAS  Google Scholar 

  13. Sahin N, Akoh CC, Karaali A. Lipase-catalyzed acidolysis of tripalmitin with hazelnut oil fatty acids and stearic acid to produce human milk fat substitutes. J. Agr. Food Chem. 53: 5779–5783 (2005)

    Article  CAS  Google Scholar 

  14. Dourtoglou T, Stefanou E, Lalas S, Dourtoglou V, Poulos C. Quick regiospecific analysis of fatty acids in triacylglycerols with GC using 1,3-specific lipase in butanol. Analyst 126: 1032–1036 (2001)

    Article  CAS  Google Scholar 

  15. Foglia TA, Conkerton EJ, Sonnet PR. Regioselective analysis of triacylglycerols by lipase hydrolysis. J. Am. Oil Chem. Soc. 72: 1275–1279 (1995)

    Article  CAS  Google Scholar 

  16. Ichihara K, Fukubayashi Y. Preparation of fatty acid methyl esters for gas-liquid chromatography. J. Lipid Res. 51: 635–640 (2010)

    Article  CAS  Google Scholar 

  17. Ackman RG. Remarks on official methods employing boron trifluoride in the preparation of methyl esters of the fatty acids of fish oils. J. Am. Oil Chem. Soc. 75: 541–545 (1998)

    Article  CAS  Google Scholar 

  18. Fulk WK, Shorb MS. Production of an artifact during methanolysis of lipids by boron trifluoride-methanol. J. Lipid Res. 11: 276–277 (1970)

    CAS  Google Scholar 

  19. Haki GD, Rakshit SK. Developments in industrially important thermostable enzymes: A review. Bioresource Technol. 89: 17–34 (2003)

    Article  CAS  Google Scholar 

  20. Lerin L, Ceni G, Richetti A, Kubiak G, Oliveira JV, Toniazzo G, Treichel H, Oestreicher EG, Oliveira D. Successive cycles of utilization of Novozym 435 in three different reaction systems. Braz. J. Chem. Eng. 28: 181–188 (2011)

    Article  CAS  Google Scholar 

  21. Ghanem A, Aboul-Enein HY. Application of lipases in kinetic resolution of racemates. Chirality 17: 1–15 (2005)

    Article  CAS  Google Scholar 

  22. Caligiani A, Marseglia A, Palla G. An overview on the presence of cyclopropane fatty acids in milk and dairy products. J. Agr. Food Chem. 62: 7828–7832 (2014)

    Article  CAS  Google Scholar 

  23. Shimadate T, Iino T, Hosoyama Y. Cyclopropenoid fatty acids from the seed oil of Firmania planatifolia. Prog. Nat. Sci. 11: 33–39 (1976)

    CAS  Google Scholar 

  24. Gaydou EM, Ralaimanarivo A, Bianchini JP. Cyclopropanoic fatty acids of litchi (Litchi chinensis) seed oil. A reinvestigation. J. Agr. Food Chem. 41: 886–890 (1993)

    Article  CAS  Google Scholar 

  25. Powell RG, Smith CR, Wolff IA. Helichrysum seed oil. I. separation and characterization of individual acids. J. Am. Oil Chem. Soc. 42: 165–169 (1965)

    CAS  Google Scholar 

  26. Zhang JY, Wang HY, Yu QT, Yu XJ, Liu BN, Huang ZH. The structures of cyclopentenyl fatty acids in the seed oils of Flacourtiaceae species by GC-MS of their 4,4-dimethyloxazoline derivatives. J. Am. Oil Chem. Soc. 66: 242–246 (1989)

    Article  CAS  Google Scholar 

  27. Chang MK, Conkerton EJ, Chapital DC, Wan PJ, Vadhwa OP, Spiers JM. Chinese melon (Momordica charantia L.) seed: Composition and potential use. J. Am. Oil Chem. Soc. 73: 263–265 (1996)

    Article  CAS  Google Scholar 

  28. Hopkins CY, Chisholm MJ. Occurrence in seed oils of some fatty acids with conjugated unsaturation. Can. J. Chemistry 43: 3160–3164 (1965)

    Article  CAS  Google Scholar 

  29. Meija J, Soukup VG. Phenyl-terminated fatty acids in seeds of various aroids. Phytochemistry 65: 2229–2237 (2004)

    Article  CAS  Google Scholar 

  30. Barthet VJ. (n-7) and (n-9) cis-monounsaturated fatty acid contents of 12 Brassica species. Phytochemistry 69: 411–417 (2008)

    Article  CAS  Google Scholar 

  31. Sreenivasan B, Kamath NR, Kane JG. Studies on castor oil. I. fatty acid composition of castor oil. J. Am. Oil Chem. Soc. 33: 61–66 (1956)

    CAS  Google Scholar 

  32. Miwa TK. Jojoba oil wax esters and derived fatty acids and alcohols: Gas chromatographic analyses. J. Am. Oil Chem. Soc. 48: 259–264 (1971)

    Article  CAS  Google Scholar 

  33. Madrigal RV, Smithe CR. Estolide triglycerides of Trewia nudiflora. Lipids 17: 650–655 (1982)

    Article  CAS  Google Scholar 

  34. Schneider EL, Loke SP, Hopkins DT. Gas-liquid chromatographic analysis of cyclopropenoid fatty acids. J. Am. Oil Chem. Soc. 45: 585–590 (1968)

    Article  CAS  Google Scholar 

  35. Fehling E, Schonwiese S, Klein E, Mukherjee KD, Weber N. Preparation of malvalic and sterculic acid methyl esters from Bombax munguba and Sterculia foetida seed oils. J. Am. Oil Chem. Soc. 75: 1757–1760 (1998)

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Young Soo Keum.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kim, CS., Lee, SK. & Keum, Y.S. Comparative studies of immobilized lipase- and acid-catalyzed fatty acid methyl ester synthesis for seed lipid analysis. Food Sci Biotechnol 25, 771–776 (2016). https://doi.org/10.1007/s10068-016-0131-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10068-016-0131-6

Keywords

Navigation