Skip to main content
Log in

Immobilized lipase-catalyzed transesterification for synthesis of biolubricant from palm oil methyl ester and trimethylolpropane

  • Research Paper
  • Published:
Bioprocess and Biosystems Engineering Aims and scope Submit manuscript

Abstract

The present study reports the effects of three commercial immobilized lipases namely Novozyme 435 from Candida antarctica lipase B (CALB), Lipozyme TL IM from Thermomyces lanuginosus and Lipozyme RM IM from Rhizomucor miehei on the production of trimethylolpropane (TMP) ester from high oleic palm methyl ester (HO-PME) and TMP. The TMP ester is a promising base oil for biolubricants that are easily biodegradable and non-toxic to humans and the environment. Enzymatic catalysts are insensitive to free fatty acid (FFA) content, hence able to mitigate the side reactions and consequently reduce product separation cost. The potential of these enzymes to produce TMP ester in a solvent-free medium was screened at various reaction time (8, 23, 30 and 48 h), operating pressure (0.1, 0.3 and 1.0 mbar) and enzyme dosage (1, 3, 5 and 10% w/w). The reaction was conducted at a constant temperature of 70 °C and a molar ratio of 3.9:1 (HO-PME: TMP). Novozyme 435 produced the highest yield of TMP ester of 95.68 ± 3.60% under the following conditions: 23 h reaction time, 0.1 mbar operating pressure and 5% w/w of enzyme dosage. The key lubrication properties of the produced TMP ester are viscosity index (208 ± 2), pour point (− 30 ± − 2 °C), cloud point (− 15 ± − 2 °C), onset thermal degradation temperature (427.8 °C), and oxidation stability, RPVOT (42 ± 4 min). The properties of the TMP ester produced from the enzymatic transesterification are comparable to other vegetable oil-based biolubricants produced by chemical transesterification.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Kalam MA, Masjuki HH, Cho HM et al (2017) Influences of thermal stability, and lubrication performance of biodegradable oil as an engine oil for improving the efficiency of heavy duty diesel engine. Fuel 196:36–46. https://doi.org/10.1016/j.fuel.2017.01.071

    Article  CAS  Google Scholar 

  2. Menkiti MC, Ocheje O, Agu CM (2017) Production of environmentally adapted lubricant basestock from jatropha curcas specie seed oil. Int J Ind Chem 8:133–144. https://doi.org/10.1007/s40090-017-0116-1

    Article  CAS  Google Scholar 

  3. Sharma RV, Somidi AKR, Dalai AK (2015) Preparation and properties evaluation of biolubricants derived from canola oil and canola biodiesel. J Agric Food Chem 63:3235–3242. https://doi.org/10.1021/jf505825k

    Article  CAS  PubMed  Google Scholar 

  4. Arumugam S, Chengareddy P, Sriram G (2018) Synthesis, characterisation and tribological investigation of vegetable oil-based pentaerythryl ester as biodegradable compressor oil. Ind Crops Prod 123:617–628. https://doi.org/10.1016/j.indcrop.2018.07.039

    Article  CAS  Google Scholar 

  5. Qiao S, Shi Y, Wang X et al (2017) Synthesis of biolubricant trimethylolpropane trioleate and its lubricant base oil properties. Energy Fuels 31:7185–7190. https://doi.org/10.1021/acs.energyfuels.7b00876

    Article  CAS  Google Scholar 

  6. Raof NA, Rashid U, Yunus R et al (2016) Development of palm-based neopentyl glycol diester as dielectric fluid and its thermal aging performance. IEEE Trans Dielectr Electr Insul 23:2051–2058. https://doi.org/10.1109/TDEI.2016.7556478

    Article  Google Scholar 

  7. Yunus R, Fakhru’l-Razi a, Ooi TL, et al (2003) Development of optimum synthesis method for transesterification of plam oil methyl esters and trimethylolpropane to environmentally acceptable palm oil-based lubricant. J Oil Palm Res 15:35–41

    CAS  Google Scholar 

  8. Koh MY, Tinia TI, Idris A (2014) Synthesis of palm based biolubricant in an oscillatory flow reactor (OFR). Ind Crops Prod 52:567–574. https://doi.org/10.1016/j.indcrop.2013.10.042

    Article  CAS  Google Scholar 

  9. Yunus R, Fakhru’l-Razi A, Ooi TL, et al (2003) Preparation and characterization of trimethylolpropane esters from palm kernel oil methyl esters. Jour J OIL PALM Res 15:42–49

  10. Hamid HA, Yunus R, Rashid U et al (2016) Synthesis of high oleic palm oil-based trimethylolpropane esters in a vacuum operated pulsed loop reactor. Fuel 166:560–566. https://doi.org/10.1016/j.fuel.2015.11.022

    Article  CAS  Google Scholar 

  11. Papadaki A, Fernandes KV, Chatzifragkou A et al (2018) Bioprocess development for biolubricant production using microbial oil derived via fermentation from confectionery industry wastes. Bioresour Technol 267:311–318. https://doi.org/10.1016/j.biortech.2018.07.016

    Article  CAS  PubMed  Google Scholar 

  12. Aguieiras ÉCG, Cavalcanti EDC, da Silva PR et al (2020) Enzymatic synthesis of neopentyl glycol-bases biolubricants using biodiesel from soybean and castor bean as raw materials. Renew Energy 148:689–696. https://doi.org/10.1016/j.renene.2019.10.156

    Article  CAS  Google Scholar 

  13. Afifah AN, Syahrullail S, Wan Azlee NI et al (2019) Biolubricant production from palm stearin through enzymatic transesterification method. Biochem Eng J 148:178–184. https://doi.org/10.1016/j.bej.2019.05.009

    Article  CAS  Google Scholar 

  14. Sun S, Wang G, Wang P (2018) A cleaner approach for biodegradable lubricants production by enzymatic glycerolysis of castor oil and kinetic analysis. J Clean Prod 188:530–535. https://doi.org/10.1016/j.jclepro.2018.04.015

    Article  CAS  Google Scholar 

  15. Greco-Duarte J, Cavalcanti-Oliveira ED, Da Silva JAC et al (2017) Two-step enzymatic production of environmentally friendly biolubricants using castor oil: enzyme selection and product characterization. Fuel 202:196–205. https://doi.org/10.1016/j.fuel.2017.04.036

    Article  CAS  Google Scholar 

  16. Mendes AA, de Castro HF, Giordano RLC (2014) Covalent attachment of lipases on glyoxyl-agarose beads: application in fruit flavor and biodiesel synthesis. Int J Biol Macromol 70:78–85. https://doi.org/10.1016/j.ijbiomac.2014.06.035

    Article  CAS  PubMed  Google Scholar 

  17. Ortiz C, Ferreira ML, Barbosa O et al (2019) Novozym 435: The “perfect” lipase immobilized biocatalyst? Catal Sci Technol 9:2380–2420. https://doi.org/10.1039/c9cy00415g

    Article  CAS  Google Scholar 

  18. Mittersteiner M, Machado TM, De Jesus PC, et al (2017) Easy and simple SiO2 immobilization of lipozyme CaLB-L: Its use as a catalyst in acylation reactions and comparison with other lipases. J Braz Chem Soc 28:1185–1192. https://doi.org/10.21577/0103-5053.20160277

  19. Cassimjee KE, Hendil-Forssell P, Volkov A et al (2017) Streamlined preparation of immobilized Candida antarctica lipase B. ACS Omega 2:8674–8677. https://doi.org/10.1021/acsomega.7b01510

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Abreu Silveira E, Moreno-Perez S, Basso A et al (2019) Biocatalyst engineering of Thermomyces lanuginosus lipase adsorbed on hydrophobic supports: modulation of enzyme properties for ethanolysis of oil in solvent-free systems. J Biotechnol 289:126–134. https://doi.org/10.1016/j.jbiotec.2018.11.014

    Article  CAS  PubMed  Google Scholar 

  21. Abreu Silveira E, Moreno-Perez S, Basso A et al (2017) Modulation of the regioselectivity of Thermomyces lanuginosus lipase via biocatalyst engineering for the ethanolysis of oil in fully anhydrous medium. BMC Biotechnol 17:1–13. https://doi.org/10.1186/s12896-017-0407-9

    Article  CAS  Google Scholar 

  22. Mendes AA, De Castro HF, Andrade GSS et al (2013) Preparation and application of epoxy-chitosan/alginate support in the immobilization of microbial lipases by covalent attachment. React Funct Polym 73:160–167. https://doi.org/10.1016/j.reactfunctpolym.2012.08.023

    Article  CAS  Google Scholar 

  23. Li K, Pan D, Fan Y, et al (2018) Rhizomucor miehei lipase immobilized on macroporous resin and its application in biodiesel synthesis. Insights Enzym Res 01:1–9. https://doi.org/10.21767/2573-4466.100001

  24. Gandhi NN, Vijayalakshmi V, Sawant SB, Joshi JB (1996) Immobilization of Mucor miehei lipase on ion exchange resins. Chem Eng J Biochem Eng J 61:149–156

    Article  CAS  Google Scholar 

  25. Gustafsson H, Johansson EM, Barrabino A et al (2012) Immobilization of lipase from Mucor miehei and Rhizopus oryzae into mesoporous silica-The effect of varied particle size and morphology. Colloids Surfaces B Biointerfaces 100:22–30. https://doi.org/10.1016/j.colsurfb.2012.04.042

    Article  CAS  PubMed  Google Scholar 

  26. De Vasconcellos A, Bergamasco Laurenti J, Miller AH et al (2015) Potential new biocatalysts for biofuel production: the fungal lipases of Thermomyces lanuginosus and Rhizomucor miehei immobilized on zeolitic supports ion exchanged with transition metals. Microporous Mesoporous Mater 214:166–180. https://doi.org/10.1016/j.micromeso.2015.05.007

    Article  CAS  Google Scholar 

  27. Fernandes KV, Papadaki A, da Silva JAC et al (2018) Enzymatic esterification of palm fatty-acid distillate for the production of polyol esters with biolubricant properties. Ind Crops Prod 116:90–96. https://doi.org/10.1016/j.indcrop.2018.02.058

    Article  CAS  Google Scholar 

  28. Bolina ICA, Salviano AB, Tardioli PW et al (2018) Preparation of ion-exchange supports via activation of epoxy-SiO2 with glycine to immobilize microbial lipase—use of biocatalysts in hydrolysis and esterification reactions. Int J Biol Macromol 120:2354–2365. https://doi.org/10.1016/j.ijbiomac.2018.08.190

    Article  CAS  PubMed  Google Scholar 

  29. Cai C, Gao Y, Liu Y et al (2016) Immobilization of Candida antarctica lipase B onto SBA-15 and their application in glycerolysis for diacylglycerols synthesis. Food Chem 212:205–212. https://doi.org/10.1016/j.foodchem.2016.05.167

    Article  CAS  PubMed  Google Scholar 

  30. Barbosa MS, Freire CCC, Brandão LMS, et al (2021) Biolubricant production under zero-waste Moringa oleifera Lam biorefinery approach for boosting circular economy. Ind Crops Prod 167:. https://doi.org/10.1016/j.indcrop.2021.113542

  31. Aguieiras ECG, de Barros DSN, Fernandez-Lafuente R, Freire DMG (2019) Production of lipases in cottonseed meal and application of the fermented solid as biocatalyst in esterification and transesterification reactions. Renew Energy 130:574–581. https://doi.org/10.1016/j.renene.2018.06.095

    Article  CAS  Google Scholar 

  32. da Moreira K, S, de Oliveira ALB, Júnior LS d. M, et al (2020) Lipase from Rhizomucor miehei immobilized on magnetic nanoparticles: performance in fatty acid ethyl ester (FAEE) optimized production by the taguchi method. Front Bioeng Biotechnol 8:1–17. https://doi.org/10.3389/fbioe.2020.00693

    Article  Google Scholar 

  33. Chapman J, Ismail AE, Dinu CZ (2018) Industrial applications of enzymes: recent advances, techniques, and outlooks. Catalysts 8:20–29. https://doi.org/10.3390/catal8060238

    Article  CAS  Google Scholar 

  34. Linko Y-Y, L~ims~i M, Huhtala A, Linko P (1994) Lipase-Catalyzed Transesterification of Rapeseed Oil and 2.Ethyl-l.Hexanol

  35. Cerón AA, Vilas Boas RN, Biaggio FC, de Castro HF (2018) Synthesis of biolubricant by transesterification of palm kernel oil with simulated fusel oil: batch and continuous processes. Biomass Bioenerg 119:166–172. https://doi.org/10.1016/j.biombioe.2018.09.013

    Article  CAS  Google Scholar 

  36. Uosukainen E, Linko Y-Y, Lamsa M et al (1998) Transesterification of trimethylolpropane and rapeseed oil methyl ester to environmentally acceptable lubricants. JAOCS J Am Oil Chem Soc 75:1557–1563

    Article  CAS  Google Scholar 

  37. Kleinaite E, Jaška V, Tvaska B, Matijošyte I (2014) A cleaner approach for biolubricant production using biodiesel as a starting material. J Clean Prod 75:40–44. https://doi.org/10.1016/j.jclepro.2014.03.077

    Article  CAS  Google Scholar 

  38. Da Silva JAC, Soares VF, Fernandez- Lafuente R et al (2015) Enzymatic production and characterization of potential biolubricants from castor bean biodiesel. J Mol Catal B Enzym 122:323–329. https://doi.org/10.1016/j.molcatb.2015.09.017

    Article  CAS  Google Scholar 

  39. Diaz PAB, Kronemberger F de A, Habert AC (2017) A pervaporation-assisted bioreactor to enhance efficiency in the synthesis of a novel biolubricant based on the enzymatic transesterification of a castor oil based biodiesel. Fuel 204:98–105. https://doi.org/10.1016/j.fuel.2017.05.025

  40. Gryglewicz S, Muszyński M, Nowicki J (2013) Enzymatic synthesis of rapeseed oil-based lubricants. Ind Crops Prod 45:25–29. https://doi.org/10.1016/j.indcrop.2012.11.038

    Article  CAS  Google Scholar 

  41. Rakkan T, Paichid N, Yunu T et al (2018) Synthesis and characterization of biolubricant from POME oil and hepatopancreas lipase from pacific white shrimp (Litopenaeus vannamei). Chiang Mai J Sci 45:2438–2453

    CAS  Google Scholar 

  42. Tao Y, Cui C, Shen H et al (2014) Enhancing trimethylolpropane esters synthesis through lipase immobilized on surface hydrophobic modified support and appropriate substrate feeding methods. Enzyme Microb Technol 58–59:60–67. https://doi.org/10.1016/j.enzmictec.2014.02.006

    Article  CAS  PubMed  Google Scholar 

  43. Basso A, Serban S (2019) Industrial applications of immobilized enzymes—a review. Mol Catal 479:110607. https://doi.org/10.1016/j.mcat.2019.110607

    Article  CAS  Google Scholar 

  44. Cavalcanti EDC, Aguieiras ÉCG, da Silva PR et al (2018) Improved production of biolubricants from soybean oil and different polyols via esterification reaction catalyzed by immobilized lipase from Candida rugosa. Fuel 215:705–713. https://doi.org/10.1016/j.fuel.2017.11.119

    Article  CAS  Google Scholar 

  45. Kim H, Choi N, Kim Y et al (2019) Immobilized lipase-catalyzed esterification for synthesis of trimethylolpropane triester as a biolubricant. Renew Energy 130:489–494. https://doi.org/10.1016/j.renene.2018.06.092

    Article  CAS  Google Scholar 

  46. Chang TS, Masood H, Yunus R et al (2012) Activity of calcium methoxide catalyst for synthesis of high oleic palm oil based trimethylolpropane triesters as lubricant base stock. Ind Eng Chem Res 51:5438–5442. https://doi.org/10.1021/ie2028365

    Article  CAS  Google Scholar 

  47. Chang TS, Yunus R, Rashid U et al (2015) Palm oil derived trimethylolpropane triesters synthetic lubricants and usage in industrial metalworking fluid. J Oleo Sci 64:143–151. https://doi.org/10.5650/jos.ess14162

    Article  CAS  PubMed  Google Scholar 

  48. Gross RA, Ganesh M, Lu W (2010) Enzyme-catalysis breathes new life into polyester condensation polymerizations. Trends Biotechnol 28:435–443. https://doi.org/10.1016/j.tibtech.2010.05.004

    Article  CAS  PubMed  Google Scholar 

  49. Wang X, Zhao Y, Jiang C et al (2021) Enzymatic synthesis of bornyl linoleate in a solvent-free system. Food Biosci 41:100947. https://doi.org/10.1016/j.fbio.2021.100947

    Article  CAS  Google Scholar 

  50. Wang M, Nie K, Yun F et al (2015) Biodiesel with low temperature properties: enzymatic synthesis of fusel alcohol fatty acid ester in a solvent free system. Renew Energy 83:1020–1025. https://doi.org/10.1016/j.renene.2015.05.058

    Article  CAS  Google Scholar 

  51. Yusoff Azudin N, Sangaran S, Abd Shukor SR (2020) Non-enzymatic synthesis route for production of isoamyl acetate in a solvent-free system using miniaturized intensified reactor. J Environ Chem Eng 8:. https://doi.org/10.1016/j.jece.2019.103186

  52. Dörmo N, Bélafi-Bakó K, Bartha L et al (2004) Manufacture of an environmental-safe biolubricant from fusel oil by enzymatic esterification in solvent-free system. Biochem Eng J 21:229–234. https://doi.org/10.1016/j.bej.2004.06.011

    Article  CAS  Google Scholar 

  53. Gustini L, Finzel L, Lavilla C et al (2016) Understanding the limitations of the solvent-free enzymatic synthesis of sorbitol-containing polyesters. ACS Sustain Chem Eng 4:2259–2268. https://doi.org/10.1021/acssuschemeng.5b01738

    Article  CAS  Google Scholar 

  54. Madarász J, Németh D, Bakos J et al (2015) Solvent-free enzymatic process for biolubricant production in continuous microfluidic reactor. J Clean Prod 93:140–144. https://doi.org/10.1016/j.jclepro.2015.01.028

    Article  CAS  Google Scholar 

  55. Zhu W, Liang F, Hou H et al (2020) Enzymatic synthesis of a polyol ester from levulinic acid and trimethylolpropane and its tribological behavior as potential biolubricant basestock. Polymers (Basel) 12:1–9. https://doi.org/10.3390/polym12102256

    Article  CAS  Google Scholar 

  56. Habibi A, Fahim S, Shirvani N, Rahimi M (2016) Enzymatic methanolysis reaction of canola oil using capillary channel reactor: determination of the kinetic constants-involved. J Mol Catal B Enzym 132:47–53. https://doi.org/10.1016/j.molcatb.2016.06.014

    Article  CAS  Google Scholar 

  57. Dehghani Soufi M, Ghobadian B, Mousavi SM, et al (2019) Valorization of waste cooking oil based biodiesel for biolubricant production in a vertical pulsed column: Energy efficient process approach. Energy 189:. https://doi.org/10.1016/j.energy.2019.116266

  58. Raof NA, Yunus R, Rashid U et al (2019) Effects of molecular structure on the physical, chemical, and electrical properties of ester-based transformer insulating liquids. JAOCS J Am Oil Chem Soc 96:607–616. https://doi.org/10.1002/aocs.12212

    Article  CAS  Google Scholar 

  59. Kwon DY, Rhee JS (1986) A simple and rapid colorimetric method for determination of free fatty acids for lipase assay. J Am Oil Chem Soc 63:89–92. https://doi.org/10.1007/BF02676129

    Article  CAS  Google Scholar 

  60. Hajar M, Vahabzadeh F (2016) Biolubricant production from castor oil in a magnetically stabilized fluidized bed reactor using lipase immobilized on Fe3O4 nanoparticles. Ind Crops Prod 94:544–556. https://doi.org/10.1016/j.indcrop.2016.09.030

    Article  CAS  Google Scholar 

  61. Yunus R, Lye OT, Fakhru’l-Razi A, Basri S (2002) A simple capillary column GC method for analysis of palm oil-based polyol esters. JAOCS, J Am Oil Chem Soc 79:1075–1080. https://doi.org/10.1007/s11746-002-0606-3

  62. Owuna FJ, Dabai MU, Sokoto MA, et al (2019) Chemical modification of vegetable oils for the production of biolubricants using trimethylolpropane: a review. Egypt. J. Pet.

  63. Hernandez K, Berenguer-murcia A, Rodrigues RC, Fernandez-lafuente R (2012) <Art00003.Pdf>. 2652–2672

  64. Rodrigues RC, Virgen-Ortíz JJ, dos Santos JCS et al (2019) Immobilization of lipases on hydrophobic supports: immobilization mechanism, advantages, problems, and solutions. Biotechnol Adv 37:746–770. https://doi.org/10.1016/j.biotechadv.2019.04.003

    Article  CAS  PubMed  Google Scholar 

  65. Hajar M, Vahabzadeh F (2014) Modeling the kinetics of biolubricant production from castor oil using Novozym 435 in a fluidized-bed reactor. Ind Crops Prod 59:252–259. https://doi.org/10.1016/j.indcrop.2014.05.032

    Article  CAS  Google Scholar 

  66. Åkerman CO, Hagström AEV, Mollaahmad MA et al (2011) Biolubricant synthesis using immobilised lipase: process optimisation of trimethylolpropane oleate production. Process Biochem 46:2225–2231. https://doi.org/10.1016/j.procbio.2011.08.006

    Article  CAS  Google Scholar 

  67. Malhotra D, Mukherjee J, Gupta MN (2015) Lipase catalyzed transesterification of castor oil by straight chain higher alcohols. J Biosci Bioeng 119:280–283. https://doi.org/10.1016/j.jbiosc.2014.08.005

    Article  CAS  PubMed  Google Scholar 

  68. Chen JW, Wu WT (2003) Regeneration of immobilized Candida antarctica lipase for transesterification. J Biosci Bioeng 95:466–469. https://doi.org/10.1263/jbb.95.466

    Article  CAS  PubMed  Google Scholar 

  69. 1998 Uosukainen1998_Article_TransesterificationOfTrimethyl

  70. Duan ZQ, Du W, Liu DH (2010) Novozym 435-catalyzed 1,3-diacylglycerol preparation via esterification in t-butanol system. Process Biochem 45:1923–1927. https://doi.org/10.1016/j.procbio.2010.03.007

    Article  CAS  Google Scholar 

  71. Tao Y, Chen B, Liu L, Tan T (2012) Synthesis of trimethylolpropane esters with immobilized lipase from Candida sp. 99–125. J Mol Catal B Enzym 74:151–155. https://doi.org/10.1016/j.molcatb.2011.07.017

    Article  CAS  Google Scholar 

  72. 1998 uosukainen transesterification of trimethylolpropane and rapeseed oil methyl ester to evironmentally acceptable lubricants

  73. Erhan SZ, Asadauskas S (2000) Lubricant basestocks from vegetable oils. Ind Crops Prod 11:277–282. https://doi.org/10.1016/S0926-6690(99)00061-8

    Article  CAS  Google Scholar 

  74. Reeves CJ, Menezes PL, Jen TC, Lovell MR (2015) The influence of fatty acids on tribological and thermal properties of natural oils as sustainable biolubricants. Tribol Int 90:123–134. https://doi.org/10.1016/j.triboint.2015.04.021

    Article  CAS  Google Scholar 

  75. Gul M, Zulkifli NWM, Masjuki HH et al (2020) Effect of TMP-based-cottonseed oil-biolubricant blends on tribological behavior of cylinder liner-piston ring combinations. Fuel 278:118242. https://doi.org/10.1016/j.fuel.2020.118242

    Article  CAS  Google Scholar 

  76. Heikal EK, Elmelawy MS, Khalil SA, Elbasuny NM (2017) Manufacturing of environment friendly biolubricants from vegetable oils. Egypt J Pet 26:53–59. https://doi.org/10.1016/j.ejpe.2016.03.003

    Article  Google Scholar 

  77. Rios ÍC, Cordeiro JP, Arruda TBMG et al (2020) Chemical modification of castor oil fatty acids (Ricinus communis) for biolubricant applications: an alternative for Brazil’s green market. Ind Crops Prod 145:112000. https://doi.org/10.1016/j.indcrop.2019.112000

    Article  CAS  Google Scholar 

  78. Borugadda VB, Goud VV (2014) Epoxidation of castor oil fatty acid methyl esters (COFAME) as a lubricant base stock using heterogeneous ion-exchange resin (IR-120) as a catalyst. Energy Procedia 54:75–84. https://doi.org/10.1016/j.egypro.2014.07.249

    Article  CAS  Google Scholar 

  79. Aziz NAM, Yunus R, Hamid HA et al (2020) An acceleration of microwave-assisted transesterification of palm oil-based methyl ester into trimethylolpropane ester. Sci Rep 10:1–17. https://doi.org/10.1038/s41598-020-76775-y

    Article  CAS  Google Scholar 

  80. Zhang W, Wu J, Yu S et al (2020) Modification and synthesis of low pour point plant-based lubricants with ionic liquid catalysis. Renew Energy 153:1320–1329. https://doi.org/10.1016/j.renene.2020.02.067

    Article  CAS  Google Scholar 

  81. Cavalcante IM, Rocha NR d. C, Maier ME, et al (2014) Synthesis and characterization of new esters of oleic acid and glycerol analogues as potential lubricants. Ind Crops Prod 62:453–459. https://doi.org/10.1016/j.indcrop.2014.08.022

  82. Ferreira EN, Arruda TBMG, Rodrigues FEA et al (2019) Investigation of the thermal degradation of the biolubricant through TG-FTIR and characterization of the biodiesel—Pequi (Caryocar brasiliensis) as energetic raw material. Fuel 245:398–405. https://doi.org/10.1016/j.fuel.2019.02.006

    Article  CAS  Google Scholar 

  83. Zhang W, Ji H, Song Y et al (2020) Green preparation of branched biolubricant by chemically modifying waste cooking oil with lipase and ionic liquid. J Clean Prod 274:122918. https://doi.org/10.1016/j.jclepro.2020.122918

    Article  CAS  Google Scholar 

  84. Mahmud HA, Salih N, Salimon J (2015) Oleic acid based polyesters of trimethylolpropane and pentaerythritol for biolubricant application. Malaysian J Anal Sci 19:97–105

    Google Scholar 

  85. Moreira DR, Chaves POB, Ferreira EN, et al (2020) Moringa polyesters as eco-friendly lubricants and its blends with naphthalenic lubricant. Ind Crops Prod 158. https://doi.org/10.1016/j.indcrop.2020.112937

Download references

Acknowledgements

The authors would like to thank Director General of the Malaysian Palm Oil Board (MPOB) and Universiti Putra Malaysia for the financial support to conduct this study.

Author information

Authors and Affiliations

Authors

Contributions

NSAW conceptualized, investigated, carried out all the experimental work, interpreted the data and wrote the manuscript. RY supervised, validated the study and reviewed the manuscript. HLNL and SAA supervised and validated the methodology of the study. TCSY contributed to data interpretation. All authors contributed to manuscript editing and approved the final version of manuscript.

Corresponding author

Correspondence to Robiah Yunus.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wafti, N.S.A., Yunus, R., Lau, H.L.N. et al. Immobilized lipase-catalyzed transesterification for synthesis of biolubricant from palm oil methyl ester and trimethylolpropane. Bioprocess Biosyst Eng 44, 2429–2444 (2021). https://doi.org/10.1007/s00449-021-02615-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00449-021-02615-6

Keywords

Navigation