Skip to main content
Log in

Thermostable enzymes for industrial applications

  • Review
  • Published:
Journal of Industrial Microbiology

Summary

The variety of thermostable (TS) enzymes has been steadily increasing for use in industrial applications, mainly as replacements for thermolabile (TL) enzymes. For example, TS amylases fromBacillus licheniformis andBacillus stearothermophilus have replaced TL amylases fromBacillus subtilis. TS enzymes also have advantages in new areas such as cyclodextrin production. The TS cyclodextrin glycosyl transferase (CGTase) fromThermoanaerobacter sp. (95°C optimum) gives a higher productivity than the CGTase fromBacillus macerans (55°C optimum). In the area of enzymatic bleach boosting of wood pulps, a TS xylanase (Myceliophera thermophila) would be advantageous over a TL xylanase (Trichoderma reesei), due to the high temperature of the incoming pulp. Not all TS enzymes are from thermophiles; the mesophileCandida antarctica produces a TS lipase which has a temperature optimum of 90°C when immobilized. The characterization of these enzymes will be described along with comparisons to some newly described TS enzymes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Bender, H. 1986. Production, characterization, and application of cyclodextrins. Adv. Biotechnol. Process 6: 31.

    Google Scholar 

  2. Berenger, J.F., C. Frixon, J. Bigiarid and N. Creuzet. 1985. Production, purification and properties of thermostable xylanase fromClostridium stercorarium. Can. J. Microbiol. 31: 635–643.

    Google Scholar 

  3. Berquist, P.L., D.R. Love, J.E. Croft, M.B. Streiff, R.M. Daniel and W.H. Morgan. 1987. Genetics and potential biotechnological applications of thermophilic and extremely thermophilic microorganisms. Biotechnol. Genet. Eng. Rev. 5: 199–244.

    Google Scholar 

  4. Biely, P. 1985. Microbial xylanolytic systems. Trends Biotechnol. 3: 286–290.

    Google Scholar 

  5. Bjorkling, F., S.E. Godtfredsen and O. Kirk. 1989. A highly simple selective enzyme-catalysed esterification of simple glucosides. J. Chem. Soc. Chem. Commun. pp. 934–935.

  6. Bragger, J.M., R.M. Daniel, T. Coolbear and H.W. Morgan. 1989. Very stable enzymes from extremely thermophilic archaebacteria and eubacteria. Appl. Microbiol. Biotechnol. 31: 556–561.

    Google Scholar 

  7. Cowan, D.A. and R.M. Daniel. 1982. Purification and some properties of an extracellular protease (caldolysin) from an extreme thermophile. Biochim. Biophys. Acta 705: 293–305.

    Google Scholar 

  8. Cowan, D.A., K.A. Smolenski, R.M. Daniel and H.W. Morgan. 1987. An extremely thermostable extracellular proteinase from a strain of the archaebacteriumDesulfurococcus growing at 88°C. Biochem. J. 247: 121–123.

    Google Scholar 

  9. Cowan, D., R. Daniel and H. Morgan. 1985. Thermophilic proteases: properties and potential applications. Trends Biotechnol. 3: 68–75.

    Google Scholar 

  10. Detroy, R.W. 1981. Bioconversion of agricultural biomass to organic chemicals. In: Organic Chemicals from Biomass (Goldstein, I.S., ed.), pp. 19–43, CRC Press, Boca Raton, FL.

    Google Scholar 

  11. Durham, D.R. 1989. Cleaning composition containing protease produced byVibrio proteloyticus. European Patent Office No. 0,319,460,A2.

  12. Eigtved, P., T. Hansen and H. Sakaguchi. 1986. Characteristics of immobilized lipase in ester synthesis and effects of water and temperature in various reactions. Paper presented at the AOCS/JOCS Annual Meeting, Honolulu, Hawaii.

  13. Endo, S. 1962. Studies of protease produced by thermophilic bacteria. Hakka Kogaku Zasshi 40: 346–353.

    Google Scholar 

  14. Eriksson, K.E.L. 1990. Biotechnology in the pulp and paper industry. Wood Sci. Technol. 24: 79–101.

    Google Scholar 

  15. Eriksson, O. and D.A.I. Goring. 1980. Structural studies on the chemical bonds between lignins and carbohydrates in spruce wood. Wood Sci. Technol. 14: 267–279.

    Google Scholar 

  16. Fujii, M., M. Takagi, T. Imanaka and S. Aiba. 1983. Molecular cloning of a thermostable neutral protease gene fromB. stearothermophilus into a vector plasmid and its expression inB. stearothermophilus andB. subtilis. J. Bacteriol. 154: 831–837.

    Google Scholar 

  17. Fusek, M., X. Lin and J. Tang. 1990. Enzymatic properties of thermopsin. J. Biol. Chem. 265: 1496–1501.

    Google Scholar 

  18. Ganju, R.K., P.J. Vithayathil, and S.K. Murthy. 1989. Purification and properties of two xylanases fromChaetomium thermophile var.coprophile. Can. J. Microbiol. 35: 836–842.

    Google Scholar 

  19. Gormsen, E., B. Hugh-Jensen, T. Christensen, E. Boel and B. Stentebjerg-Olesen. 1988. Lipolase: a microbial lipase for detergents, developed by application of r-DNA technique. Paper presented at Biotek India 1988, New Delhi, India.

  20. Gruninger, H. and Fiechter. 1986. A novel, highly thermostabled-xylanase. Enzyme Microb. Technol. 8: 309–314.

    Google Scholar 

  21. Gusek, T.E. and J.E. Kinsella. 1987. Purification and characterization of the heat stable serine protease fromThermomonospora fusca YX. Biochem. J. 246: 511–517.

    Google Scholar 

  22. Heldt-Hansen, H.P., M. Ishii, S.A. Paktar, T.T. Hansen and P. Eigtved. 1989. A new immobilized positional nonspecific lipase for fat modification and ester synthesis. In: Biocatalysis in Agricultural Biotechnology, ACS Symposium Series 389 (Whitaker, J.R. and Sonnet, P.E., eds.), American Chemical Society, Washington, DC.

    Google Scholar 

  23. Kang, I.S., N.K. Sung, H.K. Chun, T. Akiba and K. Horikoshi. 1986. Purification and characteristics of xylanases produced from thermophilic alkalophilic B.K. 17. Kor. J. Appl. Microbiol. Bioeng. 14: 447–453.

    Google Scholar 

  24. Keay, L., P.W. Moser and B.S. Wildi. 1970. Proteases of the genusBacillus. II. Alkaline Proteases. Biotechnol. Bioeng. 12: 213–249.

    Google Scholar 

  25. Kimura, Y., A. Tanaka, K. Sonomoto, T. Nihara and S. Fukui. 1983. Application of immobilized lipase to hydrolysis of triglyceride. Eur. J. Appl. Microbiol. Biotechnol. 17: 107–112.

    Google Scholar 

  26. Krishnamurthy, S. and P.J. Vithayathil. 1989. Purification and characterization of endo-1,4-B-xylanase fromPaecilomyces variota Banier. J. Ferment. Bioeng. 67: 77–82.

    Google Scholar 

  27. Kristjansson, J.K. 1989. Thermophilic organisms as sources of thermostable enzymes. Trends Biotechnol. 7: 349–353.

    Google Scholar 

  28. Kuniatate, A., M. Okamoto and I. Ohmori. 1989. Purification and characterization of a thermostable serine protease fromB. thuringiensis. Agric. Biol. Chem. 53: 3251–3256.

    Google Scholar 

  29. Latt, S.A., B. Holmquist and B.L. Vallee. 1969. Thermolysin: a zinc metalloenzyme. Biochem. Biophys. Res. Commun. 37: 333–339.

    Google Scholar 

  30. Linn, X. and J. Tang. 1990. Purification, characterization and gene cloning of Thermopsin, a thermostable acid protease fromSulfolobus acidocaldarius. J. Biol. Chem. 265: 1490–1495.

    Google Scholar 

  31. Manachini, P.L., M.G. Fortina and C. Parini. 1988. Thermostable alkaline protease produced byB. thermoruber—a new species ofBacillus. Appl. Microbiol. Biotechnol. 28: 409–413.

    Google Scholar 

  32. Matsuo, M. and T. Yasui. 1988. Xylanases ofMalbranchea pulchella var.sulfurea. Methods Enzymol. 160: 671–674.

    Google Scholar 

  33. Matzuzawaa, H., M. Hamakoi and T. Ohta. 1983. Production of thermophilic extracellular proteases (aqualysins I and II) byThermus aquaticus YT-1, an extreme thermophile. Agric. Biol. Chem. 47: 25–28.

    Google Scholar 

  34. McCarthy, A.J., E. Peace and P. Broda. 1985. Studies on the extracellular xylanase activity of some thermophilic actinomycetes. Appl. Microbiol. Biotechnol. 21: 238–244.

    Google Scholar 

  35. Mizuzawa, K., E. Ichishima and F. Yoshida. 1969. Production of thermostable alkaline protease by thermophilicStreptomyces. Appl. Microbiol. 17: 366–371.

    Google Scholar 

  36. Montet, D., R. Ratomaheina, M. Pina, J. Graille and P. Galzy. 1985. Purification and characterization of a lipase fromCandida curvata Lodder and Kreger-van Rij CBS 570. Fette Seifen Anstricmittel 87: 181–185.

    Google Scholar 

  37. Morihara, K. 1987. Using proteases in peptide synthesis. Trends Biotechnol. 5: 164–174.

    Google Scholar 

  38. Novo Industri A/S. Procedure for liquefying starch. United States Patent No. 3,912,590.

  39. Oyama, K., S. Trino, T. Harada and N. Hagi. 1984. Enzymatic production of aspartame. Ann. N.Y. Acad. Sci. 434: 95–98.

    Google Scholar 

  40. Paice, M.G., R. Bernier and L. Jurasek. 1988. Viscosity enhancing bleaching of hardwood kraft pulp with xylanase from a cloned gene. Biotechnol. Bioeng. 32: 235–239.

    Google Scholar 

  41. Pedersen, L.S. 1989. On the use of Pulpzyme HA for bleach boosting. Novo Nordisk publication.

  42. Pommier, J.C., J.L. Fuentes and G. Goma. 1989. Using enzymes to improve the process and quality in the recycled paper industry. Tappi J. 72(6): 187–191.

    Google Scholar 

  43. Sen, S., T.K. Abraham, and S.L. Chakrabarty. 1982. Characteristics of the cellulase produced byMyceliopthera thermophila D-14. Can. J. Microbiol. 28: 271–277.

    Google Scholar 

  44. Sen, S. and P. Oriel. 1989. Hyper expression of theB. stearothermophilus alpha-amylase gene inB. subtilis. Biotechnol. Lett. 11: 789–792.

    Google Scholar 

  45. Senior, D.J., P.R. Mayers, D. Miller, R. Sutcliffe, L. Tan and J.N. Saddler. 1988. Selective solubilization of xylan in a pulp using a purified xylanase fromTrichoderma harzianum. Biotechnol. Lett. 10: 907–912.

    Google Scholar 

  46. Sidler, W., B. Kumpf, B. Petrhans, and H. Zuber. 1986. A neutral proteinase produced byB. cereus with high sequence homology to thermolysin: production, isolation and characterization. Appl. Microbiol. Biotechnol. 25: 18–24.

    Google Scholar 

  47. Skaja, A.K., I.L. Blumentals, S.H. Brown, R.C. Lessick, C.B. Anifinsen, F.T. Robb and R. Kelly. 1989. Characterization and thermostability analysis of proteases from the hyperthermophilePyrococcus furiosus. Presented at the 1989 Annual Meeting of the American Chemical Society, Miami, FL, September 12.

  48. Starnes, R.L., C.L. Hoffman, V.M. Flint, P.C. Trackman and D.M. Katkocin. 1990. Starch liquefaction with a highly thermostable CGTase fromThermoanaerobacter sp. Presented at the 1990 Annual Meeting, American Chemical Society, Boston MA, April 23–27.

  49. Starnes, R.L., V.M. Flint and D.M. Katkocin. 1990. Cyclodextrin production with a highly thermostable cyclodextrin glycosyl transferase fromThermoanaerobacter sp. Presented at the 5th International Symposium on Cyclodextrins, Paris France, March 27–30.

  50. Takami, H., T. Akiba, and K. Horikoshi. 1989. Production of extremely thermostable alkaline protease fromBacillus sp. AH-101. Appl. Microbiol. Biotechnol. 30: 120–124.

    Google Scholar 

  51. Takashi, N. and T. Koshijiima. 1988. Molecular properties of lignin carbohydrate complexes from beech and pine woods. Wood Sci. Technol. 22: 177–189.

    Google Scholar 

  52. Tilden, E.B. and C.S. Hudson. 1942. Preparation and properties of the amylases produced byB. mascerans andB. polymyxa. J. Bacteriol. 43: 527.

    Google Scholar 

  53. Tomizuka, N., Y. Ota and K. Yamada. 1966. Studies on lipase fromCandida cylindracea. Part I. Purification and properties. Agric. Biol. Chem. 30: 576–584.

    Google Scholar 

  54. Trotter, P.C. 1990. Biotechnology in the pulp and paper industry: a review. Tappi J. 73(4): 198–204.

    Google Scholar 

  55. Yoshioki, H., N. Nagato, S. Chavanich, N. Nilubol and S. Hayashida. 1981. Purification and properties of thermostable xylanase fromTalaromyces byssochlamydoides YH-50. Agric. Biol. Chem. 45: 2425–2432.

    Google Scholar 

  56. Uchino, F. and O. Fukuda. 1983. Taxonomic characteristics of a thermophilic strain ofBacillus producing thermostable acidophilic amylase and thermostable xylanase. Agric. Biol. Chem. 47: 965–967.

    Google Scholar 

  57. Uchino, F. and T. Nakane. 1981. A thermostable xylanase from a thermophilicBacillus sp. Agric. Biol. Chem. 45: 1121–1127.

    Google Scholar 

  58. Ward, O.P. 1983. Proteinases. In: Microbial Enzymes and Biotechnology (Fogarty, W.M., ed.) pp. 251–305, Applied Science Publishers, London and New York.

    Google Scholar 

  59. Wasserman, B.P. 1984. Thermostable enzyme production. Food Technol.: 78–89.

  60. Yu, E.K.C., L.U.L. Tan, M.H.K. Chan, L. Deschatelets, and J.N. Saddler. 1987. Production of thermostable xylanase by a thermophilic fungus,Thermoascus aurantiacus. Enzyme Microb. Technol. 9: 16–24.

    Google Scholar 

  61. Zamost, B.L., Q.I. Brantley, D.D. Elm, and C.M. Beck. 1990. Production and characterization of a thermostable protease produced by an asporogenous mutant ofB. stearothermophilus. J. Indust. Microbiol. 5: 303–312.

    Google Scholar 

  62. Zudiweg, M.H., C.J.K. Bos and H. Van Welzen. 1972. Proteolytic components of alkaline proteases ofBacillus strains. Biotechnol. Bioeng. 14: 685–714.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zamost, B.L., Nielsen, H.K. & Starnes, R.L. Thermostable enzymes for industrial applications. Journal of Industrial Microbiology 8, 71–81 (1991). https://doi.org/10.1007/BF01578757

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01578757

Key words

Navigation