Skip to main content
Log in

Anti-hyperglycemic and hypolipidemic effects of baechukimchi with Ecklonia cava in type 2 diabetic db/db mice

  • Research Article
  • Published:
Food Science and Biotechnology Aims and scope Submit manuscript

Abstract

Anti-hyperglycemic and hypolipidemic effects of baechukimchi with Ecklonia cava were investigated in type 2 diabetic db/db mice. Baechukimchi with 15% added E. cava (BKE) was fermented at 5°C for 28 days to obtain optimally ripened BKE (pH 4.28, acidity 0.71). BKE was subjected to extraction using 80% methanol. Male db/db mice were divided into groups of db/db-control, db/db-BKE, and db/db-rosiglitazone (db/db-RG). Compounds were orally administered every day for 6 weeks. The db/db-BKE mice had lowered blood glucose and plasma insulin levels. Plasma total cholesterol, triglyceride, and LDL-cholesterol levels in db/db-BKE mice were significantly (p<0.05) decreased, compared with untreated db/db mice, while db/db-BKE mice had significantly (p<0.05) increased HDL-cholesterol levels. The db/db-BKE mice had significantly (p<0.05) decreased levels of liver total cholesterol and triglyceride. BKE significantly (p<0.05) increased antioxidant enzyme activities, and ROS and lipid peroxidation levels were significantly (p<0.05) lower in db/db-BKE mice than in db/db mice.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Sharma B, Salunke R, Srivastava S, Majumder C, Roy P. Effects of guggulsterone isolated from Commiphora mukul in high fat diet induced diabetic rats. Food Chem. Toxicol. 47: 2631–2639 (2009)

    Article  CAS  Google Scholar 

  2. Bonnard C, Durand A, Peyrol S, Chanseaume E, Chauvin MA. Mitochondrial dysfunction results from oxidative stress in the skeletal muscle of diet-induced insulin-resistant mice. J. Clin. Invest. 118: 789–800 (2008)

    CAS  Google Scholar 

  3. Baynes JW. Role of oxidative stress in development of complications in diabetes. Diabetes 40: 405–412 (1991)

    Article  CAS  Google Scholar 

  4. Shin HC, Hwang HJ, Kang KJ, Lee BH. An antioxidative and antiinflammatory agent for potential treatment of osteoarthritis from Ecklonia cava. Arch. Pharm. Res. 29: 165–171 (2006)

    Article  CAS  Google Scholar 

  5. Ahn G, Hwang I, Park E, Kim J, Jeon YJ, Lee J, Park JW, Jee Y. Immunomodulatory effects of an enzymatic extract from Ecklonia cava on murine splenocytes. Mar. Biotechnol. 10: 278–289 (2008)

    Article  CAS  Google Scholar 

  6. Park EY, Kim EH, Kim MH, Seo YW, Lee JI, Jun HS. Polyphenol-rich fraction of brown alga Ecklonia cava collected from Gijang, Korea, reduces obesity and glucose levels in high-fat diet-induced obese mice. Evid.-Based Compl. Alt. 2012: 418912 (2012)

    Google Scholar 

  7. Park JM, Shin JH, Gu JG, Yoon SJ, Song JC, Jeon WM, Suh HJ, Chang UJ, Yang CY, Kim JM. Effect of antioxidant activity in kimchi during a short-term and over-ripening fermentation period. J. Biosci. Bioeng. 112: 356–359 (2011)

    Article  CAS  Google Scholar 

  8. Kim MJ, Kwon MJ, Song YO, Lee EK, Youn HJ, Song YS. The effects of kimchi on hematological and immunological parameters in vivo and in vitro. J. Korean Soc. Food. Sci. Nutr. 26: 1208–1214 (1997)

    CAS  Google Scholar 

  9. Nan HM, Park JW, Song YJ, Yun HY, Park JS, Hyun T, Youn SJ, Kim YD, Kang JW, Kim H. Kimchi and soybean pastes are risk factors of gastric cancer. World J. Gastroentero. 11: 3175–3181 (2005)

    CAS  Google Scholar 

  10. Lee HA, Song YO, Jang MS, Han JS. Alleviating Effects of baechukimchi added Ecklonia cava on postprandial hyperglycemia in diabetic mice. Prev. Nutr. Food Sci. 18: 163–168 (2013)

    Article  Google Scholar 

  11. NIH. Guide for the Care and Use of Laboratory Animals. 8th ed. National Academies Press, Washington, DC, USA. pp. 11–40 (2011)

    Google Scholar 

  12. Katz A, Nambi SS, Mather K, Baron AD, Follmann DA, Sullivan G, Quon MJ. Quantitative insulin sensitivity check index: A simple, accurate method for assessing insulin sensitivity in humans. J. Clin. Endocr. Metab. 85: 2402–2410 (2000)

    Article  CAS  Google Scholar 

  13. Hulcher PH, Oleson WH. Simplified spectrophotometric assay for microsomal 3-hydroxy-3-methylglutaryl CoA reductase by measurement of coenzyme A. J. Lipid. Res. 14: 625–631 (1973)

    CAS  Google Scholar 

  14. Bradford MM. A rapid and sensitive method for the quantification of microgram quantities of proteins utilizing the principle of protein-dye binding. Anal. Biochem. 72: 248–254 (1976)

    Article  CAS  Google Scholar 

  15. Marklund S, Marklund G. Involvement of the superoxide anion radical in antioxidant of pyrogallol and a convenient assay for superoxide dismutase. Eur. J. Biochem. 47: 469–474 (1974)

    Article  CAS  Google Scholar 

  16. Aebi H. Catalase in vitro. Method. Enzymol. 105: 121–126 (1974)

    Article  Google Scholar 

  17. Lawrence RA, Burk RF, Jenkinson SG, Gregory PE. Non-selenium-dependent glutathione peroxidase activity in rat lung: Association with lung glutathione S-transferase activity and the effects of hyperoxia. Toxicol. Appl. Pharm. 68: 399–404 (1983)

    Article  Google Scholar 

  18. Ali SF, Lebel CP, Bondy SC. Reactive oxygen species formation as a biomarker of methylmercury and trimethyltin neurotoxicity. Neurotoxicology 13: 637–648 (1992)

    CAS  Google Scholar 

  19. Ohkawa H, Ohishi N, Yagi K. Assay for lipid peroxides in animal tissues by thiobarbituric acid reaction. Anal. Biochem. 95: 351–358 (1979)

    Article  CAS  Google Scholar 

  20. Seifter S, Dayton S, Novic B, Muntwyler E. The estimation of glycogen with the anthrone reagent. Arch. Biochem. 25: 191–200 (1950)

    CAS  Google Scholar 

  21. Reitman S, Frankel S. A colorimetric method for the determination of serum glutamic oxalacetic and glutamic pyruvic transaminases. Am. J. Clin. Pathol. 28: 56–63 (1957)

    CAS  Google Scholar 

  22. Yamanaka M, Itakura Y, Tsuchida A, Nakagawa T, Noguchi H, Taiji M. Comparison of the antidiabetic effects of brain-derived neurotrophic factor and thiazolidinediones in obese diabetic mice. Diabetes Obes. Metab. 9: 879–888 (2007)

    Article  CAS  Google Scholar 

  23. DeFronzo RA. Pharmacologic therapy for type 2 diabetes mellitus. Ann. Intern. Med. 131: 281–303 (1999)

    Article  CAS  Google Scholar 

  24. DeFronzo RA, Gunnarsson R, Bjorkman O, Olsson M, Wahren J. Effects of insulin on peripheral and splanchnic glucose metabolism in non-insulin dependent diabetes mellitus. J. Clin. Invest. 76: 149–155 (1985)

    Article  CAS  Google Scholar 

  25. Diamant M, Heine RJ. Thiazolidinediones in type 2 diabetes mellitus: Current clinical evidence. Drugs 63: 1373–405 (2003)

    Article  CAS  Google Scholar 

  26. Brown WV, Clark L, Falko JM, Guyton JR, Rees TJ, Schonfeld G, Lopes-Virella MF. Optimal management of lipids in diabetes and metabolic syndrome. J. Clin. Lipidol. 2: 335–342 (2008)

    Article  Google Scholar 

  27. Chang YH, Lin KC, Chang DM, Hsieh CH, Lee YJ. Paradoxical negative HDL cholesterol response to atorvastatin and simvastatin treatment in Chinese type 2 diabetic patients. Rev. Diabet. Stud. 10: 213–222 (2013)

    Article  Google Scholar 

  28. Kim EK, An SY, Lee MS, Kim TH, Lee HK, Hwang WS, Choe SJ, Kim TY, Han SJ, Kim HJ, Kim DJ, Lee KW. Fermented kimchi reduces body weight and improves metabolic parameters in overweight and obese patients. Nutr. Res. 31: 436–443 (2011)

    Article  CAS  Google Scholar 

  29. Sano T, Umeda F, Hashimoto T, Nawata H, Utsumi H. Oxidative stress measurement by in vivo electron spin resonance spectroscopy in rats with streptozotocin-induced diabetes. Diabetologia 41: 1355–1360 (1998)

    Article  CAS  Google Scholar 

  30. Baynes JW, Thorpe SR. Role of oxidative stress in diabetic complications: A new perspective on an old paradigm. Diabetes 48: 1–9 (1999)

    Article  CAS  Google Scholar 

  31. Wohaieb S, Godin D. Alteration in free radical tissue-defense mechanisms in streptozotocin-induced diabetes in rats: Effect of insulin treatment. Diabetes 36: 1014–1018 (1987)

    Article  CAS  Google Scholar 

  32. Park JM, Shin JH, Gu JG, Yoon SJ, Song JC, Jeon WM, Suh HJ, Chang UJ, Yang CY, Kim JM. Effect of antioxidant activity in kimchi during a short-term and over-ripening fermentation period. J. Biosci. Bioeng. 112: 356–359 (2011)

    Article  CAS  Google Scholar 

  33. MacRury SM, Gordon D, Wilson R. A comparison of different methods of assessing free radical activity in type 2 diabetes and peripheral vascular diseases. Diabetic Med. 10: 331–335 (1993)

    Article  CAS  Google Scholar 

  34. Kakkar R, Mantha SV, Radhin J, Prasad K, Kalra J. Increased oxidative stress in rat liver and pancreas during progression of streptozotocin-induced diabetes. Clin. Sci. 94: 623–632 (1998)

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ji-Sook Han.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lee, HA., Park, Mh., Song, YO. et al. Anti-hyperglycemic and hypolipidemic effects of baechukimchi with Ecklonia cava in type 2 diabetic db/db mice. Food Sci Biotechnol 24, 307–314 (2015). https://doi.org/10.1007/s10068-015-0041-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10068-015-0041-z

Keywords

Navigation