Skip to main content
Log in

Growth optimization of thraustochytrid strain 12B for the commercial production of docosahexaenoic acid

  • Research Article
  • Published:
Food Science and Biotechnology Aims and scope Submit manuscript

Abstract

High yield of cell, lipid, and docosahexaenoic acid (DHA) from thraustochytrid strain 12B were achieved without the use of a complex medium and at low NaCl concentration which is detrimental to avoid unnecessary corrosion of steel tank equipment during cultivation. Culture medium that contained only 0.1% NaCl and 1% MgSO4 in an organic base solution containing 8% glucose, 1% yeast extract, and 1% peptone, referred here as NM medium, was found to be as good as or superior to the culture medium prepared from 50%(v/v) seawater with percentage lipid/dry cell weight (DCW) of 66.4%(w/w) and DHA yield up to 43.95 mg/g DCW for the thraustochytrid strain 12B. The NM medium was also applicable to the prominently high DHA-accumulating Schizochytrium limacinum SR21, and therefore this medium could probably be used for other thraustochytrid and other types of microbial strains as well.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Salem N, Litman B, Kim HY, Gawrisch K. Mechanisms of action of docosahexaenoic acid in the nervous system. Lipids 36: 945–959 (2001)

    Article  CAS  Google Scholar 

  2. Raghukumar S. Thraustochytrid marine protists: Production of PUFAs and other emerging technologies. Mar. Biotechnol. 10: 631–640 (2008)

    Article  CAS  Google Scholar 

  3. Perveen Z, Ando H, Ueno A, Ito Y, Yamamoto Y, Yamada Y, Takagi T, Kaneko T, Kogame K, Okuyama H. Isolation and characterization of a novel thraustochytrid-like microorganism that efficiently produces docosahexaenoic acid. Biotechnol. Lett. 28: 197–202 (2006)

    CAS  Google Scholar 

  4. Nakahara T, Yokochi T, Higashihara T, Tanaka S, Yaguchi T, Honda D. Production of docosahexaenoic and docosapentaenoic acids by Schizochytrium sp. isolated from Yap Islands. J. Am. Oil Chem. Soc. 73: 1421–1426 (1996)

    Article  CAS  Google Scholar 

  5. Gupta A, Barrow CJ, Puri M. ω-3 Biotechnology: Thraustochytrids as a novel source of ω-3 oils. Biotechnol. Adv. doi:10.1016/j.biotechadv.2012.02.014: 1–13 (2012)

    Google Scholar 

  6. Hong DD, Anh HTL, Thu NTH. Study on biological characteristics of heterotrophic marine microalga-Schizochytrium mangrovei PQ6 isolated from Phu Quoc island, Kien Giang province, Vietnam. J. Phycol. 47: 944–954 (2011)

    Article  CAS  Google Scholar 

  7. Barclay WR. Process for growing thraustochytrium and Schizochytrium using non-chloride salts to produce a microfloral biomass having ω-3 highly unsaturated fatty acids. U.S. Patent 5,340,742 (1994)

    Google Scholar 

  8. Shabala L, McMeekin T, Shabala S. Osmotic adjustment and requirement for sodium in marine protist thraustochytrid. Environ. Microbiol. 11: 1835–1843 (2009)

    Article  CAS  Google Scholar 

  9. Wright J, Colling A. Seawater: Its Composition, Properties, and Behavior. 2nd ed. Butterworth-Heinemann, Oxford, UK. pp. 29–31 (1995)

    Google Scholar 

  10. Min KH, Lee HH, Anbu P, Chaulagain BP, Hur BK. The effects of culture condition on the growth property and docosahexaenoic acid production from Thraustochytrium aureum ATCC 34304. Korean J. Chem. Eng. 29: 1211–1215 (2012)

    Article  CAS  Google Scholar 

  11. Grundfos. Corrosion resistance chart, aggressive water. Available from: http://nsf.kavi.com/apps/group_public/download.php/2055/Chlorides%20Stainless%20Resistance.pdf. Accessed Aug. 31, 2012.

  12. Unagul P, Assantachai C, Phadungruengluij S, Pongsuteeragul T, Suphantharika M, Verduyn C. Biomass and docosahexaenoic acid formation by Schizochytrium mangrovei Sk-02 at low salt concentrations. Bot. Mar. 49: 182–190 (2006)

    Article  CAS  Google Scholar 

  13. Bligh EG, Dyer WJ. A rapid method of total lipid extraction and purification. Can. J. Biochem. Physiol. 37: 911–917 (1959)

    Article  CAS  Google Scholar 

  14. Orikasa Y, Yamada A, Yu R, Ito Y, Nishida T, Yumoto I, Watanabe K, Okuyama H. Characterization of the eicosapentaenoic acid biosynthesis gene cluster from Shewanella sp. strain SCRC-2738. Cell. Mol. Biol. 50: 625–630 (2004)

    CAS  Google Scholar 

  15. Okuyama H, Orikasa Y, Nishida T. In vivo conversion of triacylglycerol to docosahexaenoic acid-containing phospholipids in a thraustochytrid-like microorganism, strain 12B. Biotechnol. Lett. 29: 1977–1981 (2007)

    Article  CAS  Google Scholar 

  16. Yaguchi T, Tanaka S, Yokochi T, Nakahara T, Higashihara T. Production of high yields of docosahexaenoic acid by Schizochytrium sp. strain SR21. J. Am. Oil Chem. Soc. 74: 1431–1434 (1997)

    Article  CAS  Google Scholar 

  17. Jahnen-Dechent W, Ketteler M. Magnesium basics. Clin. Kidney J. 5(suppl. 1): i3–i14 (2012)

    Article  CAS  Google Scholar 

  18. Wolf FI, Cittadini A. Magnesium in cell proliferation and differentiation. Front. Biosci. 4: 607–617 (1999)

    Article  Google Scholar 

  19. Garrill A, Clipson NJW, Jennings DH. Preliminary observations on the monovalent cation relations of Thraustochytrium aureum, a fungus requiring sodium for growth. Mycol. Res. 96: 295–304 (1992)

    Article  CAS  Google Scholar 

  20. Wethered JM, Jennings DH. Major solutes contributing to solute potential of Thraustochytrium aureum and T. roseum after growth in media of different salinities. T. Brit. Mycol. Soc. 85: 439–446 (1985)

    Article  CAS  Google Scholar 

  21. Zhu L, Zhang X, Ji L, Song X, Kuang C. Changes of lipid content and lipid fatty acid composition of Schizocytrium limacinum in response to different temperatures and salinities. Process Biochem. 42: 210–214 (2007)

    Article  CAS  Google Scholar 

  22. Flatman WP. Mechanisms of magnesium transport. Annu. Rev. Physiol. 53: 259–271 (1991)

    Article  CAS  Google Scholar 

  23. Flatman PW, Smith LM. Sodium dependent magnesium uptake by ferret red cells. J. Physiol. 443: 217–230 (1991)

    CAS  Google Scholar 

  24. Carman GM, Han GS. Roles of phosphatidate phosphatase enzymes in lipid metabolism. Trends Biochem. Sci. 31: 694–699 (2006)

    Article  CAS  Google Scholar 

  25. Yen CLE, Stone SJ, Koliwad S, Harris C, Farese RV Jr. DGAT enzymes and triacylglycerol biosynthesis. J. Lipid Res. 49: 2283–2301 (2008)

    Article  CAS  Google Scholar 

  26. Cases S, Stone SJ, Zhou P, Yen E, Tow B, Lardizabal KD, Voelker T, Farese RV Jr. Cloning of DGAT2, a second mammalian diacylglycerol acyltransferase, and related family members. J. Biol. Chem. 276: 38870–38876 (2001)

    Article  CAS  Google Scholar 

  27. Tsui CKM, Fan KW, Chow RKK, Jones EBG, Vrijmoed LLP. Zoospore production and motility of mangrove thraustochytrids from Hong Kong under various salinities. Mycoscience 53: 1–9 (2012)

    Article  Google Scholar 

  28. Al-hasan RH, Ghannoum MA, Sallal AK, Abu-Elteen KH, Radwan SS. Correlative changes of growth, pigmentation, and lipid composition of Dunaliella salina in response to halostress. J. Gen. Microbiol. 133: 2607–2616 (1987)

    CAS  Google Scholar 

  29. Stefanov K, Seizova K, Elenkov I, Kuleva L, Popov S, Dimitrova-Konaklieva S. Lipid composition of the red algae Chondria tenuissima (Good et Wood) Ag. Inhibiting waters with different salinities. Bot. Mar. 37: 445–447 (1994)

    Article  CAS  Google Scholar 

  30. Elenkov I, Stefanov K, Dimitrova-Konaklieva S, Popov S. Effect of salinity on lipid composition of Cladophora vagabunda. Photochemistry 42: 39–44 (1996)

    Article  CAS  Google Scholar 

  31. Renaud SM, Parry DL. Microalgae for use in tropical aquaculture II: Effect of salinity on growth, gross chemical composition and fatty acid composition of three species of marine microalgae. J. Appl. Phycol. 6: 347–356 (1994)

    Article  CAS  Google Scholar 

  32. Chaung KC, Chu CY, Su YM, Chen YM. Effect of culture conditions on growth, lipid content, and fatty acid composition of Aurantiochytrium mangrovei strain BL10. AMB Express 2: 1–11 (2012)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hidetoshi Okuyama.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Taha, A.I.B.H.M., Kimoto, T., Kanada, T. et al. Growth optimization of thraustochytrid strain 12B for the commercial production of docosahexaenoic acid. Food Sci Biotechnol 22 (Suppl 1), 53–58 (2013). https://doi.org/10.1007/s10068-013-0048-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10068-013-0048-2

Keywords

Navigation