Skip to main content
Log in

Improvement of culture conditions for cell biomass and fatty acid production by marine thraustochytrid F24-2

  • Published:
Journal of Applied Phycology Aims and scope Submit manuscript

Abstract

Identification of fermentation parameters affecting biomass and total fatty acid (TFA) production by thraustochytrid F24-2 was conducted using a Plackett-Burman experimental design. Factors influencing biomass accumulation were initial pH, sea salts, and glucose concentration. Additionally, temperature, initial pH, soy peptone, glucose, and sea salt concentration affected TFA production. Docosapentaenoic acid (n-6 DPA), palmitic acid (C16:0), and docosahexaenoic acid (DHA) were the predominant fatty acids produced. The best biomass (10.71 ± 0.04 g L−1), TFA (2.11 ± 0.07 g L−1), DHA (0.92 ± 0.04 g L−1), and C16:0 (0.65 ± 0.02 g L−1) concentrations were obtained at 25 °C with a medium adjusted to pH 7 and containing (per liter): 20 g glucose, 20 g soy peptone, 18 g sea salts, 0.2 g ammonium sulfate, 3 μg vitamin B12, 3 μg biotin, and 0.6 mg thiamine hydrochloride. Under these conditions, DHA production increased 18.5% in comparison to a complex medium previously used to grow thraustochytrid Thraustochytrium aureum ATCC 34304.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Arafiles KHVAJ, Cordero PRF, Batoon JAL, Galura FS, Leano EM, Dedeles GR (2011) Cultural optimization of thraustochytrids for biomass and fatty acid production. Mycosphere 2:521–531

    Google Scholar 

  • Armenta RE, Valentine MC (2013) Single-cell oils as a source of omega-3 fatty acids: an overview of recent advances. J Am Oil Chem Soc 90:167–182

  • Armenta RE, Scott SD, Burja AM, Radianingtyas H, Barrow CJ (2009) Optimization of fatty acid determination in selected fish and microalgal oils. Chromatographia 70:629–636

    Article  CAS  Google Scholar 

  • Burja AM, Radianingtyas H, Windust A, Barrow CJ (2006) Isolation and characterization of polyunsaturated fatty acid producing Thraustochytrium species: screening of strains and optimization of omega-3 production. Appl Microbiol Biotechnol 72:1161–1169

    Article  CAS  PubMed  Google Scholar 

  • Chaung K-C, Chu C-Y, Su Y-M, Chen Y-M (2012) Effect of culture conditions on growth, lipid content, and fatty acid composition of Aurantiochytrium mangrovei strain BL10. AMB Express 2:42–42

    Article  PubMed  PubMed Central  Google Scholar 

  • Cui Y, Fraser C, Gardner G, Huang CJ, Reith M, Windust AJ (2012) Isolation and optimisation of the oleaginous yeast Sporobolomyces roseus for biosynthesis of 13C isotopically labelled 18-carbon unsaturated fatty acids and trans 18:1 and 18:2 derivatives through synthesis. J Ind Microbiol Biotechnol 39:153–161

    Article  CAS  PubMed  Google Scholar 

  • Gupta A, Barrow CJ, Puri M (2012) Omega-3 biotechnology: Thraustochytrids as a novel source of omega-3 oils. Biotechnol Adv 30:1733–1745

    Article  CAS  PubMed  Google Scholar 

  • Huang J, Aki T, Hachida K, Yokochi T, Kawamoto S, Shigeta S, Ono K, Suzuki O (2001) Profile of polyunsaturated fatty acids produced by Thraustochytrium sp. KK17-3. J Am Oil Chem Soc 78:605–610

    Article  CAS  Google Scholar 

  • Jacobs A, Botha A, Van Zyl WH (2009) The production of eicosapentaenoic acid by representatives of the genus Mortierella grown on brewers’ spent grain. Biologia 64:871–876

    Article  CAS  Google Scholar 

  • Jain R, Raghukumar S, Sambaiah K, Kumon Y, Nakahara T (2007) Docosahexaenoic acid accumulation in thraustochytrids: search for the rationale. Mar Biol 151:1657–1664

    Article  CAS  Google Scholar 

  • Jakobsen AN, Aasen IM, Josefsen KD, Strøm AR (2008) Accumulation of docosahexaenoic acid-rich lipid in thraustochytrid Aurantiochytrium sp. strain T66: effects of N and P starvation and O2 limitation. Appl Microbiol Biotechnol 80:297–306

    Article  CAS  PubMed  Google Scholar 

  • Johnson MB, Wen Z (2009) Production of biodiesel fuel from the microalga Schizochytrium limacinum by direct transesterification of algal biomass. Energy Fuel 10:5179–5183

    Article  Google Scholar 

  • Kermanshahi-Pour A, Zimmerman JB, Anastas PT (2013) Microalgae-derived chemicals: opportunity for an integrated chemical plant. In: Razeghifard R (ed) Natural and artificial photosynthesis: solar power as an energy source. John Wiley & Sons Inc., Hoboken, New Jersey, pp 387–433

  • Kim HO, Lim JM, Joo JH, Kim SW, Hwang HJ, Choi JW, Yun JW (2005) Optimization of submerged culture condition for the production of mycelial biomass and exopolysaccharides by Agrocybe cylindracea. Bioresour Technol 96:1175–1182

    Article  CAS  PubMed  Google Scholar 

  • Kim K, Jung Kim E, Ryu BG, Park S, Choi YE, Yang JW (2013) A novel fed-batch process based on the biology of Aurantiochytrium sp. KRS101 for the production of biodiesel and docosahexaenoic acid. Bioresour Technol 135:269–274

    Article  CAS  PubMed  Google Scholar 

  • Knothe G, Bagby MO, Ryan TW III (1998) Precombustion of fatty acids and esters of biodiesel. A possible explanation for differing cetane numbers. JAOCS 75:1007–1013

    Article  CAS  Google Scholar 

  • Lee Chang KJ, Dunstan GA, Abell GC, Clementson LA, Blackburn SI, Nichols PD, Koutoulis A (2012) Biodiscovery of new Australian thraustochytrids for production of biodiesel and long-chain omega-3 oils. Appl Microbiol Biotechnol 93:2215–2231

    Article  PubMed  Google Scholar 

  • Lewis T, Nichols PD, McMeekin TA (2000) Evaluation of extraction methods for recovery of fatty acids from lipid-producing microheterotrophs. J Microbiol Methods 43:107–116

    Article  CAS  PubMed  Google Scholar 

  • Lowrey J, Armenta RE, Brooks MS (2016) Recycling of lipid-extracted hydrolysate as nitrogen supplementation for production of thraustochytrid biomass. J Ind Microbiol Biotechnol 43:1105–1115

    Article  CAS  PubMed  Google Scholar 

  • Lu Y, Ding Y, Wu Q (2011) Simultaneous saccharification of cassava starch and fermentation of algae for biodiesel production. J Appl Phycol 23:115–121

    Article  CAS  Google Scholar 

  • Manikan V, Kalil MS, Isa MHM, Hamid AA (2014) Improved prediction for medium optimization using factorial screening for docosahexaenoic acid production by Schizochytrium sp. SW1. Am J Appl Sci 11:462–474

    Article  Google Scholar 

  • Marchan LF, Lee Chang KJ, Nichols PD, Polglase JL, Mitchell WJ, Gutierrez T (2017) Screening of new British thraustochytrids isolates for docosahexaenoic acid (DHA) production. J Appl Phycol. https://doi.org/10.1007/s10811-017-1149-8

  • Mendes A, Reis A, Vasconcelos R, Guerra P, Lopes da Silva T (2009) Crypthecodinium cohnii with emphasis on DHA production: a review. J Appl Phycol 21:199–214

    Article  Google Scholar 

  • Miller MR, Nichols PD, Carter CG (2007) Replacement of fish oil with thraustochytrid Schizochytrium sp. L oil in Atlantic salmon parr (Salmo salar L) diets. Comp Biochem Physiol A 148:382–392

    Article  Google Scholar 

  • Min KH, Lee HH, Anbu P, Chaulagain BP, Hur BK (2012) The effects of culture condition on the growth property and docosahexaenoic acid production from Thraustochytrium aureum ATCC 34304. Korean J Chem Eng 29:1211–1215

    Article  CAS  Google Scholar 

  • Mukherjee PK, Marcheselli VL, Serhan CN, Bazan NG (2004) Neuroprotectin D1: a docosahexaenoic acid-derived docosatriene protects human retinal pigment epithelial cells from oxidative stress. Proc Natl Acad Sci U S A 101:8491–8496

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nakazawa A, Matsuura H, Kose R, Ito K, Ueda M, Honda D, Inouye I, Kaya K, Watanabe MM (2012) Optimization of biomass and fatty acid production by Aurantiochytrium sp. strain 4W-1b. Procedia Environ Sci 15:27–33

    Article  CAS  Google Scholar 

  • Ortiz GE, Ponce-Mora MC, Noseda DG, Cazabat G, Saravalli C, Lopez MC, Gil GP, Blasco M, Alberto EO (2017) Pectinase production by Aspergillus giganteus in solid-state fermentation: optimization, scale-up, biochemical characterization and its application in olive-oil extraction. J Ind Microbiol Biotechnol 44:197–211

    Article  CAS  PubMed  Google Scholar 

  • Plackett RL, Burman JP (1946) The design of optimum multifactorial experiments. Biometrika 33:305–325

    Article  Google Scholar 

  • Raghukumar S (2008) Thraustochytrid marine protists: production of PUFAs and other emerging technologies. Mar Biotechnol 10:631–640

    Article  CAS  PubMed  Google Scholar 

  • Raghukumar S, Anil AC, Khandeparker L, Patil JS (2000) Thraustochytrid protists as a component of marine microbial films. Mar Biol 136:603–609

    Article  Google Scholar 

  • Ramos MJ, Fernández CM, Casas A, Rodríguez L, Pérez A (2009) Influence of fatty acid composition of raw materials on biodiesel properties. Bioresour Technol 100:261–268

    Article  CAS  PubMed  Google Scholar 

  • Ratledge C (2004) Fatty acid biosynthesis in microorganisms being used for single cell oil production. Biochimie 86:807–815

    Article  CAS  PubMed  Google Scholar 

  • Ren L-J, Sun L-N, Zhuang X-Y, Qu L, Ji X-J, Huang H (2014) Regulation of docosahexaenoic acid production by Schizochytrium sp.: effect of nitrogen addition. Bioprocess Biosyst Eng 37:865–872

    Article  CAS  PubMed  Google Scholar 

  • Rosa SM, Soria MA, Velez CG, Galvagno MA (2010) Improvement of a two-stage fermentation process for docosahexaenoic acid production by Aurantiochytrium limacinum SR21 applying statistical experimental designs and data analysis. Bioresour Technol 101:2367–2374

    Article  CAS  PubMed  Google Scholar 

  • Shabala L, McMeekin T, Shabala S (2009) Osmotic adjustment and requirement for sodium in marine protist thraustochytrid. Environ Microbiol 11:1835–1843

    Article  CAS  PubMed  Google Scholar 

  • Singh P, Liu Y, Li L, Wang G (2014) Ecological dynamics and biotechnological implications of thraustochytrids from marine habitats. Appl Microbiol Biotechnol 98:5789–5805

    Article  CAS  PubMed  Google Scholar 

  • Soliman NA, Berekaa MM, Abdel-Fattah YR (2005) Polyglutamic acid (PGA) production by Bacillus sp. SAB-26: application of Plackett-Burman experimental design to evaluate culture requirements. Appl Microbiol Biotechnol 69:259–267

    Article  CAS  PubMed  Google Scholar 

  • Song X, Zhang X, Kuang C, Zhu L, Guo N (2007) Optimization of fermentation parameters for the biomass and DHA production of Schizochytrium limacinum OUC88 using response surface methodology. Process Biochem 42:1391–1397

    Article  CAS  Google Scholar 

  • Willard JV (1984) Ammonia: its effects on biological systems, metabolic hormones, and reproduction. J Dairy Sci 67:481–498

    Article  Google Scholar 

  • Wu S-T, Yu S-T, Lin L-P (2005) Effect of culture conditions on docosahexaenoic acid production by Schizochytrium sp. S31. Process Biochem 40:3103–3108

    Article  CAS  Google Scholar 

  • Zeng X, Liu J, Chen J, Wang Q, Li Z, Wang H (2011) Screening of the common culture conditions affecting crystallinity of bacterial cellulose. J Ind Microbiol Biotechnol 38:1993–1999

    Article  CAS  PubMed  Google Scholar 

  • Zhu L, Zhang X, Ren X, Zhu Q (2008) Effects of culture conditions on growth and docosahexaenoic acid production from Schizochytrium limacinum. J Ocean Univ China 7:83–88

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors are grateful to Dr. A. J. Windust, and staff at Mara, for their support. This work was supported by the grant of postdoctoral residencies abroad (No. 232236 and No. 259588) from The Mexican National Council for Science and Technology (CONACYT) and the Natural Sciences and Engineering Research Council (NSERC) of Canada.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marianne S. Brooks.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ugalde, V., Armenta, R.E., Kermanshahi-pour, A. et al. Improvement of culture conditions for cell biomass and fatty acid production by marine thraustochytrid F24-2. J Appl Phycol 30, 329–339 (2018). https://doi.org/10.1007/s10811-017-1274-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10811-017-1274-4

Keywords

Navigation