Skip to main content
Log in

Influence of geology and topography on the occurrence of mine massive collapse—back-analysis of a historical collapse of chalk mine (France)

  • Original Paper
  • Published:
Bulletin of Engineering Geology and the Environment Aims and scope Submit manuscript

Abstract

Pillars of an underground mine are designed to ensure long-term stability and preserve the surface assets from the consequences of mining. However, long-term stability is never guaranteed. Over time, subsidence and collapses can occur, and the consequences are sometimes dramatic. Such collapses depend on the exploitation characteristics, the mechanical properties of the terrain, and the potential presence of water, but additional factors can play a major role. This study aims to identify the predisposing and triggering factors of the collapse, including stiff beds, cliffs, and faults. Back-analysis was carried out on a historic dramatic massive collapse of a chalk mine (Beaulieu, France, 1910). Numerical modelling (finite and distinct elements) was carried out to highlight the influence of mining geometry, the stiff bed, and the cliff. Then, the mechanism of the collapse of the Beaulieu mine was investigated. The results demonstrate the importance of the geometric configurations of the site for the development of such a phenomenon, particularly the cumulative effects of the excavation (extraction ratio), the cliff, and the stiff bed. These cumulative factors increase the risk of a massive collapse. This study has shown that the stability of abandoned room and pillar underground mines should cover three concepts: estimation of the stress state of the pillars, the strength of the pillars, and the presence of a cliff as well as a significant discontinuity crossing the rock mass which could be a fault.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Similar content being viewed by others

Data availability

The data used are available in the paper.

References

  • Al Heib M, Duval C, Theoleyre F, Watelet J-M, Gombert P (2015) Analysis of the historical collapse of an abandoned underground chalk mine in 1961 in Clamart (Paris, France). Bull Eng Geol Env 74:1001–1018. https://doi.org/10.1007/s10064-014-0677-6

    Article  Google Scholar 

  • Al Heib M, Zevgolis IE, Theocharis AI, Koukouzas NC, Coccia S (2021) Analysis of faults’ effect on the stability of surface lignite mining areas using the distinct element method. Geotech Geol Eng. https://doi.org/10.1007/s10706-021-01964-z

  • Bekendam RF (2020) A reanalysis of the collapse of the Heidegroeve: subsidence over an abandoned room and pillar mine due to previously unknown mine workings underneath. Proc IAHS 382(269–275):2020. https://doi.org/10.5194/piahs-382-269-2020

    Article  Google Scholar 

  • Bell FG, Stacey TR (2000) Mining subsidence and its effect on the environment: some differing examples. Environ Earth Sci 40(1):135–152. https://doi.org/10.1007/s002540000140

    Article  Google Scholar 

  • Bérest P, Brouard B, Feuga B (2003) Dry mine abandonment, Solution Mining Research Institute Technical Conference Paper, Fall 2003 Conference, 5–8 October, Chester, United Kingdom, 28 pp

  • Castellanza R, Lollino P, Ciantia M (2018) A methodological approach to assess the hazard of underground cavities subjected to environmental weathering. Tunn Undergr Space Technol 82:278–292. https://doi.org/10.1016/j.tust.2018.08.041

    Article  Google Scholar 

  • Cherkaoui A, Al Heib M (2013) Critères de détermination de l’aléa versant rocheux sous-cavés. Journées Aléa Gravitaire (JAG), Sep 2013, Grenoble, France

  • Conil N, Al Heib M, Gombert Ph, Spitzenteder N, Muller R, Gaumet F, Pajiep D (2023) An underground research laboratory at Château-Landon (France) to study the impact of climate change on the stability of abandoned mines. Bull Eng Geol Environ

  • Cui X, Gao Y, Yaun D (2014) Sudden surface collapse disasters caused by shallow partial mining in Datong coalfield, China. Nat Hazards 74:911–929. https://doi.org/10.1007/s11069-0-0114-1221-5

    Article  Google Scholar 

  • Dehghan S, Shahriar K, Maarefvand P, Goshtasbi K (2013) 3-D numerical modelling of Domino failure of hard rock pillars in Fetr6 Chromite Mine, Iran, and comparison with empirical methods. J Cent South Univ 20:541–549. https://doi.org/10.1007/s11771-013-1517-8

    Article  Google Scholar 

  • Delage P, Munoz-Castelblanco J, Pereira JM, Tang AM (2011) Comportement de la craie du site de Lorroy. Rapport ENPC/CERMES 1264, 15 pages

  • De Lucia D, Fazio NL, Lollino P (2022) Dynamic behaviour of abandoned underground mines: insights from numerical simulations. Rock Mech Rock Eng 55:3859–3879. https://doi.org/10.1007/s00603-022-02832-9

    Article  Google Scholar 

  • Edmonds CN (2008) Karst and mining geohazard with particular references to the chalk outcrop, England. Q J Eng Geol Hydrogeol 41(3):279–290

  • Elshayeb Y, Kouniali S, Josien JP, Gueniffey Y (2001) Towards the determination of surface collapse type over abandoned mines in the Lorraine Iron basin, Proceedings of the ISRM Regional Symposium EUROCK 2001. Espoo/Finland. 4–7 june 2001, pp. 819–824

  • Esterhuizen GS, Tyrna PL, Murphy MM (2018) A case study of pillar collapse at a limestone mine in Pennsylvania. ARMA 18–363

  • Fairhurst C, Piguet JP, Van Der Merwe N (2003) Examen de la méthode GEODERIS d’évaluation des risques et des conséquences potentielles relatifs aux affaissements de surface dans le bassin ferrifère lorrain, Version française

  • Fazio NL, Perrottia M, Lollinoa P, Pariseb M, Vattanoc M, Madoniac G, Di Maggio C (2017) A three-dimensional back-analysis of the collapse of an underground cavity in soft rocks. Eng Geol 228(2017):301–311. https://doi.org/10.1016/j.enggeo.2017.08.014

    Article  Google Scholar 

  • Fougeron J, Souley S, Homand F (2005) Collapse/subsidence: role and influence of overburden in Lorraine iron mines case. Symposium Post mining 2005, Nancy, France. pp. NC

  • Franck C, Salmon R, Didier C, Paquette Y, Pokryszka Z (2017) Évaluation des aléas miniers, Rapport Ineris_17_164640_01944

  • Geniş M, Aydan O (2020) Dynamic analyses of abandoned mines in Mitake (Japan) during earthquakes. 9(3):159–170. https://doi.org/10.1680/jenge.18.00120

  • Geogieva T, Descamps F, Gomze N, Vandycke S, Ajdanlijsky G, Tshibangu JP (2020) European Journal of Environmental and Civil Engineering (Informa UK Limited)-pp 1–15. Stability assessment of a shallow abandoned chalk mine of Malogne (Belgium)

  • Gilbride LJ, Free KS, Kehrman R (2005) Block cave subsidence at the Molycorp, Inc., Questa mine—a case study, 2005, ARMA, American Rock Mechanics Association, ARMA/USRMS 05-881 limestone mines, 25th international conference on ground control in mining, Morgantown, pp 354–361

  • Gombert P, Auvray C, Al Heib M (2013) In-situ and laboratory tests to evaluate the impact of water table fluctuations on stability of underground chalk mines. Procedia Earth and Planetary Science 7:304–308

    Article  Google Scholar 

  • Gombert PH, Cherkaoui A (2011) Analyse climatologique, hydrologique et hydrogéologique des effondrements survenus à Château-Landon (77) aux XIXe et XXe siècles. Rapport INERIS DRS-11–117680–00812A, 61 pages

  • Gutiérrez F, Calaforra J, Luch P (2008) A genetic classification of sinkholes illustrated from evaporite paleokarst exposures in Spain. Environ Geol 53:993–1006

  • Hommand F (2004) Etude des formations de couverture au droit de zones à risque, rapport GEODERIS référencé LG.FH.GEO.PSI.RPRE.03.0248.A

  • Kaufmann O, Quinif Y (2002) Geohazard map of cover-collapse sinkholes in the ‘Tournaisis’ area, southern Belgium. Eng Geol 65(2002):117–124.

  • Lafrance N (2016) Study of the effects of water on the phenomena of rupture and deformation affecting underground chalk quarries. PhD thesis. University of Lorraine

  • Lafrance N, Souley M, Auvray C, Favreau O, Labiouse V (2014b) Aging of chalk rocks in an underground quarry. Rock engineering and rock mechanics: structures in and on rock masses: proceedings of the international symposium EUROCK 2014b: 445–450. Leiden : CRC Press

  • Lafrance N, Souley M, Auvray C, Labiouse V (2014a) Influence de l’eau sur le comportement de la craie. Journées Nationales de Géotechnique et de Géologie de l’Ingénieur JNGG2014a, 10 pages

  • Liénard AM (1910) Procès-verbal d’enquête. Effondrement d’une carrière. Mines. Arrondissement minéralogique de Versailles: 16 p

  • Longoni L, Papini M, Brambilla D, Arosio D, Zanzi L (2016) The risk of collapse in abandoned mine sites: the issue of data uncertainty. https://doi.org/10.1515/geo-2016-0022.OpenGeosci;8:246-258

  • Moiriat D, Pothérat P, Durville JL, Bébien J (2005) Observations sur la fracturation liée à l’incision d’une vallée-Carrière souterraine des Brillants (Hauts-de-Seine). Bulletin Des Laboratoires Des Ponts Et Chaussées 258–259:3–14

    Google Scholar 

  • Pommarede P (1988) La catastrophe de Chancelade. Bulletin De La Société Historique Et Archéologique Du Périgord 115:61–73

    Google Scholar 

  • PPRN (2008) Les PPRN (plan de prévention des risques naturels) liés à la présence de cavités souterraines. Guide méthodologique. Risque naturels majeurs. http://www.developpement-durable.gouv.fr - http://www.prim.net

  • Renaud V, Cherkaoui A, Gombert Ph, Watelet J-M, Kreziak CH (2019) Understanding the instability mechanisms of chalk mines in presence of water (France). 14 Inter. National Congress on rock Mechanicks and Rock engineering. Brazil

  • Savage WZ (1994) Gravity induced stresses in finite slopes. Int J Rock Mech Min Sci Geomech Abstr 31:471–483

    Article  Google Scholar 

  • Savage WZ, Swolfs HS (1986) Tectonic and gravitational stress in long symmetric ridges and valleys. J Geophys Res 91:3677–3685

    Article  Google Scholar 

  • Savage WZ, Swolfs PPS (1985) Gravitational stress in long symmetric ridges and valleys. Int J Rock MechMin Sci Geomech Abstr 22:291–302

    Article  Google Scholar 

  • Spyridon Liakas S, O’Sullivan C, Saroglou CH (2017) Influence of heterogeneity on rock strength and stiffness using discrete element method and parallel bond model. J Rock Mech Geotech Eng 9:575e584

  • Szwedzicki T (2001) Geotechnical precursors to large-scale ground collapse in mines. Int J Rock Mech Min Sci 38(2001):957–965

    Article  Google Scholar 

  • Trigueros E, Cánovas M, Arzúa J, Alcaraz M (2021) Stability of an abandoned siderite mine: a case study in northern Spain. Open Geosciences 13:359–376

    Article  Google Scholar 

  • Wang JA, Shang XC, Ma HT (2008) Investigation of catastrophic ground collapse in Xingtai gypsum mines in China. Int J Rock Mech Min Sci 45:1480–1499

  • Watelet JM, Kreziak Ch, Al Heib M (2016) Analyse and questioning on 1910 collapse of Lorroy chalk underground quarry. Journées Nationales de Géotechnique et de Géologie de l’Ingénieur – Nancy France

  • Whyatt JK, Verley FD (2008) Mining publication: catastrophic failures of underground evaporite mines. Proceedings of the 27th International Conference on Ground Control in Mining, Morgantown. West Virginia University 113–122

  • Zaniab M, Kamaruzaman M, Cho GCH (2008) Uniaxial compressive strength of composite rock material with respect to shale thickness ratio and moisture content. EJGE. Vol. 13

  • Zipf RK (1982) Pillar design to prevent collapse of room-and-pillar mines, [M]// W. HUSTRULID M and RL BULLOCK, eds, Underground mining methods handbook. Littleton, CO, Society for Mining, Metallurgy, and Exploration

Download references

Acknowledgements

The authors thank the department of Seine et Marne, owner of the “Royer” mine within the framework of the project for the protection of bats, for the authorisation to access and instrument this site, and the Ministry of Ecological Transition for the financial support. They also thank Meteo France to allow us to use the weather data from its station.

Author information

Authors and Affiliations

Authors

Contributions

We attest to the fact that all authors listed on the title page have contributed significantly to the work, have read the manuscript, attest to the validity and legitimacy of the data and its interpretation, and agree to its submission to the Bulletin of Engineering Geology and the Environment. The corresponding author is submitting this on behalf of all authors.

Corresponding author

Correspondence to Marwan Al Heib.

Ethics declarations

Conflict of interest

This statement is to certify that all authors have seen and approved the manuscript being submitted. We warrant that the article is the authors’ original work. We warrant that the article has not received prior publication and is not under consideration for publication elsewhere. On behalf of all co-authors, the corresponding author shall bear full responsibility for the submission.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Al Heib, M., Conil, N. & Gombert, P. Influence of geology and topography on the occurrence of mine massive collapse—back-analysis of a historical collapse of chalk mine (France). Bull Eng Geol Environ 82, 230 (2023). https://doi.org/10.1007/s10064-023-03234-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10064-023-03234-z

Keywords

Navigation