Skip to main content
Log in

A new internal friction angle–based approach for estimating Hoek–Brown constant mi and its comparison with those estimated from some current methods

  • Original Paper
  • Published:
Bulletin of Engineering Geology and the Environment Aims and scope Submit manuscript

Abstract

One of the two independent key parameters of the Hoek–Brown failure criterion, mi, is calculated using 3-axial test data consisting of at least five major and minor principal stresses and the regression method. In the absence of 3-axial test data, the guideline chart, which provides mi values, is commonly used in practice. However, mi values calculated from regression analyses have a much greater spread than that proposed in the Guideline. Therefore, simplified models, based on some strength properties, have been proposed to calculate mi values. But some of these prediction models were based on a few types of rock and limited data. In this study, an alternative method for predicting mi using internal friction angle (ϕ), which is determined from classical 3-axial test, is proposed. First a brief description of the proposed method was given and a summary on the existing methods for predicting mi was discussed with their limitations, and the data selection criteria used by the authors were also described. In order to assess the prediction performance of the proposed method, a database, consisting of 125 data sets and representing a total of 26 different rock types, was compiled from a well-known dataset and published sources. Results of the comparisons between the proposed method and some of the current prediction methods mainly suggested that the proposed method yields the best mi predictions. It is also noted that for sedimentary rocks, the ranges of mi estimated from this method were closer to those proposed in the Guideline chart.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Aladejare A, Wang Y (2019) Probabilistic characterization of Hoek-Brown constant mi of rock using Hoek’s guideline chart, regression model and uniaxial compression test. Geotech Geol Eng 37:5045–5060

    Article  Google Scholar 

  • Arshadnejad S, Nick N (2016) Empirical models to evaluate of ‘‘mi’’ as an intact rock constant in the Hoek–Brown rock failure criterion. In: 19th Southeast Asian Geotechnical Conference & 2nd AGSSEA Conference (19SEAGC & 2AGSSEA) Kuala Lumpur, 31 May–3 June 2016, pp 943–948

  • Arzua J, Alejano LR (2003) Dilation in granite during servo-controlled triaxial strength tests. Int J Rock Mech Min Sci 61:43–56

    Article  Google Scholar 

  • Arzua J, Alejano LR, Walton G (2014) Strength and dilation of jointed granite specimens in servo-controlled triaxial tests. Int J Rock Mech Min Sci 69:93–104

    Article  Google Scholar 

  • ASTM (2000) Annual Book of ASTM Standards-Soil and Rock, Building Stones, Section-4, Construction, vol. 04.08. ASTM Publications, Philadelphia

  • Barat D (1995) Personal communication from C.M.R.I., Dhanbat (after Sheorey 1997)

  • Bell FG, Jermy CA (2000) The geotechnical character of some South African dolerites especially their strength and durability. Q J Eng Geol Hydro 33:59–76

    Article  Google Scholar 

  • Bell FG, Lindsay P (1999) The petrographic and geomechanical properties of some sandstones from the Newspaper Member of the Natal Group near Durban, South Africa. Eng Geol 53:57–81

    Article  Google Scholar 

  • Betourney MC, Gorski B, Labrie D, Jackson R, Gyenge M (1991) New considerations in the determination of Hoek and Brown material constants. In: Wittke W (ed) 7th Int Cong ISRM Rock Mech, Aachen, Germany, vol 1, pp 195–200

  • Borecki M, Kwasnewski M, Pacha J, Oleksy S, Berszakiewicz Z, Guzik J (1982) Triaxial compressive strength of two mineralogic/diagenetic varieties of coal-measure, fine-medium grained Pniowek and Anna sandstones tested under confining pressure up to 60 MPa. In: Proc. Instiytutu PBKiOP PolitechnikiSlaskiej, 119/2, Gliwice

  • Cai M (2010) Practical estimates of tensile strength and Hoek-Brown strength parameter mi of brittle rocks. Rock Mech Rock Eng 43:167–184

    Article  Google Scholar 

  • Carter BJ, Scott Duncan EJ, Lajtai EZ (1991) Fitting strength criteria to intact rock. Geotech Geol Eng 9:73–81

    Article  Google Scholar 

  • Chan SSM, Crocker TJ, Wardell GG (1972) Engineering properties of rocks and rock masses in the deep mines of the Coeur d’Alene Mining District, Idaho. Trans Soc Min Eng AIME 252:353–361

    Google Scholar 

  • Davarpanah SM, Sharghi M, Vásárhelyi B, Török A (2021) Characterization of Hoek-Brown constant mi of quasi-isotropic intact rock using rigidity index approach. Acta Geotech. https://doi.org/10.1007/s11440-021-01229-2

    Article  Google Scholar 

  • Dayre M, Giraud A (1986) Mechanical properties of granodiorite from laboratory tests. Eng Geol 23:109–124

    Article  Google Scholar 

  • Dlugosz M, Gustkiewicz J, Wysocki A (1981) Apparatus for investigation of rocks in a triaxial state of stress: Part II, Some Investigation results concerning certain rocks. Arcjhiwum Gornictwa 26:29–41

    Google Scholar 

  • Douglas KJ (2002) The shear strength of rock masses. School of Civil and Environmental Engineering, University of New South Wales, Sydney, Australia (PhD Thesis, unpublished)

    Google Scholar 

  • Erguler ZA (2007) Investigation of the effect of water content on engineering behavior of the clay-bearing rocks. Dept. of Geological Engineering, Hacettepe University, Ankara, Turkey (PhD Thesis, in Turkish, unpublished)

    Google Scholar 

  • Everling G (1960) Rock mechanical investigations and basis for determination of rock pressure according to deformation of drill holes. Gluckauf 96:390–409

    Google Scholar 

  • Glushko VT, Kirnichanskiy GT (1974) Engineering-geological prognosticating of stability of the opening in deep coal mines. Nedra, Moscow

    Google Scholar 

  • Gnirk PF, Cheatham JB (1965) An experimental study of single bit tooth penetration into dry rock at confining pressures of 0–5000 psi. J Soc Pet Eng 5:117–130

    Article  Google Scholar 

  • Gong F, Luo S, Lin G, Li X (2020) Evaluation of shear strength parameters of rocks by preset angle shear, direct shear and triaxial compression tests. Rock Mech Rock Eng 53:2505–2519

    Article  Google Scholar 

  • Gorski B, Conlon B, Ljunggren B (2007) Determination of the direct and indirect tensile strength on cores from borehole KFM01D (Svensk Kärnbränsle-hantering AB Report P-07–76). SKB, Stockholm

    Google Scholar 

  • Gorski B, Yu Y (1996) A new laboratory test apparatus for determination of rock tensile strength. In Aubertin M, Hassani F, Mitri HS (eds) NARMS96 Proc. 2nd North. American Rock Mech. Symp., Tools and Techniques, Montreal, Balkema, Rotterdam, pp 1539–1542

  • Griffith AA (1924) The theory of rupture. In: Proceedings of the 1st International Congress on Applied Mechanics, Delft, pp 54–63

  • He M, Zhang Z, Zheng J, Chen F, Li N (2020) A new perspective on the constant mi of the Hoek-Brown failure criterion and a new model for determining the residual strength of rock. Rock Mech Rock Eng 53:3953–3967

    Article  Google Scholar 

  • Heidarzadeh S, Saeidi A, Lavoie C, Rouleau A (2021) Geomechanical characterization of a heterogenous rock mass using geological and laboratory test results: a case study of the Niobec Mine, Quebec (Canada). SN Appl Sci 3:640. https://doi.org/10.1007/s42452-021-04617-1

    Article  Google Scholar 

  • Hobbs DW (1964) The strength and the stress strain characteristics of coal in triaxial compression. J Geol 72:214–231

    Article  Google Scholar 

  • Hoek E (2007) Practical Rock Engineering - Chapter 11: Rock mass properties. https://www.rocscience.com/learning/hoeks-corner. Accessed Date 8 May 2021

  • Hoek E, Brown ET (1980a) Empirical strength criterion for rock masses. J Geotech Geoenviron Eng ASCE 106:1013–1035

    Google Scholar 

  • Hoek E, Brown ET (1980b) Underground excavation in rock. Institution of Mining and Metallurgy, London

    Google Scholar 

  • Hoek, E, Brown ET (1988) The Hoek-Brown failure criterion: a 1988 update. In: Jurran JC (ed) Proceedings of the 15th Canadian Rock Mechanics Symposium: Rock Engineering for Underground Excavations. University of Toronto, pp 31–38

  • Hoek E, Brown ET (1997) Practical estimates of rock mass strength. Int J Rock Mech Min Sci 34(8):1165–1186

    Article  Google Scholar 

  • Hoek E, Brown ET (2019) The Hoek-Brown Failure criterion and GSI–2018 edition. J Rock Mech Geotech Eng 11:445–463

    Article  Google Scholar 

  • Hoek E, Carranza-Torres CT, Corkum B (2002) Hoek-Brown failure criterion-2002 edition. In: Proceedings of the 5th North American Rock Mechanics Symposium, Toronto, Canada, vol 1, pp 267–273

  • Hoek E, Kaiser PK, Bawden WF (1995) Support of Underground Excavations in Hard Rock. Balkema, Rotterdam

    Google Scholar 

  • Hoek E, Marinos P (2000) Predicting tunnel squeezing problems in weak heterogeneous rock masses. Tunn Tunn Int 32(11):45–51

    Google Scholar 

  • Hoek E, Wood D, Shah S (1992) A modified Hoek-Brown criterion for jointed rock masses. In: Hudson JA (ed) ISRM Symposium: Eurock'92-Rock Characterization. Thomas Telford

  • Hossaini SME, Vutukuri VS (1993) On the accuracy of multifailure triaxial test for the determination of peak and residual strength of rocks. In: Szwedzicki (ed) Aust. Conf. Geotech. Instrumentation and Monitoring in Open Pit and underground Mining, Kalgoorlie, pp 223–228

  • Ilnitskaya EI, Teder RI, Vatolin ES, Kuntysh MF (1969) Properties of rocks and methods of their determination. Nedra, Moscow

    Google Scholar 

  • ISRM (1981) ISRM suggested methods: rock characterization, testing and monitoring. In: Brown ET (ed). Pergamon Press, London, p 211

  • ISRM (2007) The complete ISRM suggested methods for rock characterization, testing and monitoring: 1974–2006. In: Ulusay R, Hudson JA (eds) Suggested Methods Prepared by the Commission on Testing Methods. International Society for Rock Mechanics, Compilation Arranged by the ISRM Turkish National Group, Kozan Ofset, Ankara, Turkey

  • Kumar R, Sharma KG, Varadarajan A (2010) Post-peak response of some metamorphic rocks of India under high confining pressures. Int J Rock Mech Min Sci 47(8):1357–1362

    Article  Google Scholar 

  • Kuntysh MF (1964) Investigation of methods of determining the basic physico-mechanical characteristics of rocks, used while solving the problem of rock pressure. Cand Tech Sci Thesis, Moscow

  • Kwasniewski MA (1983) Deformational and strength properties of the three structural varieties of carboniferous sandstones. In: 5th Int. Cong. Rock Mech. (ISRM), 1, Balkema, Rotterdam, pp. A105–A 115

  • Martin CD (2011) Relationship between Brazilian and direct tensile strength. Unpublished notes, October 2011 (from Read SAL, Richards L, 2015)

  • Masoumi H (2013) Investigation into the mechanical behaviour of intact rock at different sizes. University of New South Wales, Sydney, Australia (PhD Thesis, unpublished)

    Google Scholar 

  • Mehrishal A, Sharifzadeh M, Shahryar K (2015) Estimating of Hoek–Brown mi using internal friction angle. In: Proceedings of the 24th International Mining Congress of Turkey, IMCET 2015, pp 488–493

  • Misra B (1972) Correlation of rock properties with machine performance. Leeds University (PhD thesis, unpublished)

    Google Scholar 

  • Mostyn G, Douglas K (2000) Strength of intact rock and rock masses. In: Proceedings of International Conference on Geotechnical and Geological Engineering, vol 1. Techonomic Publishing, Lancaster, pp 1389–1421

  • Muralha J, Lamas L (2014) Assessment of characteristic failure envelopes for intact rock using results from triaxial tests. In: Alejano LR, Perucho A, Olalla C, Jimenez R (eds) Proceedings of EUROCK 2014: Rock Engineering and Rock Mechanics: Structures in and on Rock Masses. Taylor and Francis Group, London, pp 1525-1530

  • Murrel SAF (1965) The effect of triaxial stress systems on the strength of rock at atmospheric temperature. Geophys J 10:231–281

    Article  Google Scholar 

  • Pendey P, Singh DP (1986) Deformation of a rock in different tensile tests. Eng Geol 22(3):281–292

    Article  Google Scholar 

  • Peng J, Rong G, Cai M, Zhou CB, Du W (2013) Simulating brittle failure of rocks by a new strain-softening model. In: Paper No. 715, Proceedings of the 47th US Rock Mechanics/Geomechanics Symposium, San Francisco, CA, USA

  • Perras M, Diederichs MS (2014) A review of the tensile strength of rock: concepts and testing. Geotech Geol Eng 32:525–546

    Article  Google Scholar 

  • Ramamurthy T (1989) Personal communication from I. I. T., Delhi (after Sheorey, 1997)

  • Rao KS, Rao GV, Ramamurthy T (1983) Strength anisotropy of a Vindhyan sandstone. Indian Geotech Conf, Madras 1:141–148

    Google Scholar 

  • Read SAL, Richards LR (2012) A comparative study of mi, the Hoek-Brown constant for intact rock material. In: Qian Q, Zhou Y (eds) Proceedings of 12th ISRM Int Cong for Rock Mech, Beijing, China, Par No. 139, pp 805-810

  • Read SAL, Richards L (2014) Correlation of direct and indirect tensile tests for use in the Hoek–Brown constant mi. In: Alejano LR, Perucho A, Olalla C, Jimenez R (eds) Proceedings of EUROCK 2014: Rock Engineering and Rock Mechanics: Structures in and on Rock Masses. Taylor and Francis Group, London, pp 161–166

  • Read SAL, Richards L (2015) Guidelines for use of tensile data in the calculation of the Hoek-Brown constant mi. In: Proceedings of 15th ISRM Congress, Montreal, Canada, p 14

  • Richards L, Read SAL (2011) A comparison of methods for determining mi, the Hoek-Brown parameter for intact rock material. In: Proceedings 45th US Rock Mechanics/Geomechanics Symposium, American Rock Mechanics Association, San Francisco. Paper No. ARMA 11-246

  • Richards LR, Read SAL (2013) Estimation of Hoek-Brown parameter mi using Brazilian tensile test. In: Iannacchione A (ed) Proceedings 47th US Rock Mechanics/Geomechanics Symposium, S. Francisco, USA, Paper ARMA/USMRS 13–465, p 14

  • Rocscience (2010) Product overview-RocLab, RocProp and RocData. http://www.rocscience.com/products/overview

  • Rocscience (2012) RocData. http://www.rocscience.com/products/4/RocDataæ

  • Sabatakakis N, Tsiambaos G, Ktena S, Bouboukas S (2018) The effect of microstructure on mi strength parameter variation of common rock types. Bull Eng Geol Environ 77:1673–1688

    Article  Google Scholar 

  • Sari M (2012) An improved method of fitting experimental data to the Hoek-Brown failure criterion. Eng Geol 127:27–35

    Article  Google Scholar 

  • Schwartz AE (1964) Failure of rock in the triaxial shear test. In: Proceedings of the 6th Rock Mechanics Symposium, University of Missouri, USA, pp 109–135

  • Shen J, Karakus M (2014) Simplified method for estimating the Hoek-Brown constant for intact rocks. J Geotech Geoenviron Eng 140(1):04014025–04014031

    Article  Google Scholar 

  • Sheorey PR (1997) Empirical Rock Failure Criteria. A.A. Balkema, Rotterdam, Netherlands

    Google Scholar 

  • Singh M, Raj A, Singh B (2011) Modified Mohr-Coulomb criterion for non-linear triaxial and polyaxial strength of intact rocks. Int J Rock Mech Min Sci 48(4):546–555

    Article  Google Scholar 

  • Singh M, Sahu AK, Srivastava RK, Tiwari RP (1992) Evaluation and applicability of strength for rocks: sandstones and quartzites of Mirzapur region. In: Asian Regional Symposium, Rock Slopes, Oxford and IBH, New Delhi, pp 117–124

  • Stowe RL (1969) Strength and deformation properties of granite, basalt, limestone and tuff at various loading rates. U.S Army Corps Eng., Waterways Exp. Stn., Vicksburg Miss., Misc. Paper C-69–1

  • Tuncay E, Özcan NT, Kalender A (2019) An approach to predict the length-to-diameter ratio of a rock core specimen for uniaxial compression tests. Bull Eng Geol Environ 78: 5467–5482

  • Vásárhelyi B, Kovács L, Török A (2016) Analysing the modified Hoek-Brown failure criteria using Hungarian granitic rocks. Geomech Geophys Geo-Energy Geo-Resour 2:131–136

    Article  Google Scholar 

  • Walton G, Arzua J, Alejano LR, Diederichs MS (2015) A laboratory-testing-based study on the strength, deformability, and dilatancy of carbonate rocks at low confinement. Rock Mech Rock Eng 48:941–958

    Article  Google Scholar 

  • Wang W, Shen J (2017) Comparison of existing methods and a new tensile strength based model in estimating the Hoek-Brown constant mi, for intact rocks. Eng Geol 224:87–96

    Article  Google Scholar 

  • Winn K, Ng M, Wong LNY (2017) Stability analysis of underground storage cavern Excavation in Singapore. Proc Eng 191:1040–1047

    Article  Google Scholar 

  • Xu S, de Freitas MH, Clarke BA (1988) The measurement of tensile strength of rock. In: Romana M (ed) International Society for Rock Mechanics Symposium. Balkema, Rotterdam, pp 125–132

    Google Scholar 

  • Yang SQ, Jiang YZ, Xu WY, Chen XQ (2008) Experimental investigation on strength and failure behavior of pre-cracked marble under conventional triaxial compression. Int J Solids Struct 45:4796–4819

    Article  Google Scholar 

  • Yang SQ, Jing HW, Wang SY (2012) Experimental investigation on the strength, deformability, failure behavior and acoustic emission locations of red sandstone under triaxial compression. Rock Mech Rock Eng 45(4):583–606

    Article  Google Scholar 

  • Yasar S (2020) An experimental study to determine the Hoek-Brown constant (mi) for tuffs. Yerbilimleri Bull Earth Sci 42(1):52–69

    Google Scholar 

  • Yumlu M, Ozbay MU (1995) A study of the behaviour of brittle rocks under plane strain and triaxial loading conditions. Int J Rock Mech Min Sci 32(7):725–733

    Article  Google Scholar 

Download references

Acknowledgements

The authors gratefully thank the two anonymous reviewers for their valuable and constructive comments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hasan Karakul.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Appendix: Published geomechanical values of the rock types which were compiled from the literature and used in this study and mi values predicted from some methods

Appendix: Published geomechanical values of the rock types which were compiled from the literature and used in this study and mi values predicted from some methods

Rock data no.

Rock type

(Reference no. )

UCS

(σc)

(MPa)

TS

(σt) (MPa)

mi (Calculated)

(From data- base)

ϕexperimental (°)

Range of mi in the guideline

mi predicted from ϕexp. (This study)

R-index

(miσc/σt)

mi from UCS-TS based method

(Arshadnejad and Nick 2016) (rock type)

mi from special form of R-index (ϕ)

(Mehrishal et al. 2015)

mi from TS-based method (Wang and Shen 2017)

mi from UCS-based method (Shen and Karakus 2014)

Absolute prediction errors calculated for the models used

This study

R-index

UCS-TS method

Special form of R

TS-based model

UCS-based model

1. Siltstone (1)

46.00

6.42**

2.6

40.0

5–9

8.97

7.17

6.96 (S)

9.19

  

6.37

4.57

4.36

6.59

  

2. Mudstone (1)

41.40

4.10**

11.2

42.5

2–9

10.29

10.10

9.05 (S)

10.32

  

0.91

1.1

2.15

0.88

  

3. Mudstone (1)

44.56

4.18**

11.2

45.0

2–9

11.84

10.66

9.43 (S)

11.64

  

0.64

0.54

1.77

0.44

  

4. Siltstone (1)

61.09

10.78**

7.0

37.5

5–9

7.84

5.67

5.78 (S)

8.22

  

0.84

1.33

1.22

1.22

  

5. Siltstone (1)

89.49

11.34**

3.7

31.0

5–9

5.48

7.89

7.50 (S)

6.24

  

1.78

4.19

3.8

2.54

  

6. Mudstone (1)

119.77

10.00**

15.2

49.5

2–9

15.49

11.98

10.31 (S)

14.68

  

0.29

3.22

4.89

0.52

  

7. Marl (1)

84.42

7.19**

5.5

33.0

5–9

6.13

11.74

10.15 (S)

6.78

  

0.63

6.24

4.65

1.28

  

8. Ignimbrite (1)

6.58

0.60**

7.7

38.5

8–18

8.28

10.97

10.15 (I)

8.59

  

0.58

3.27

2.45

0.89

  

9. Siltstone (1)

15.56

2.23**

9.8

44.0

5–9

11.19

6.98

6.82 (S)

11.09

  

1.39

2.82

2.98

1.29

  

10. Marl (1)

82.76

7.24**

7.4

43.0

5–9

10.58

11.43

9.95 (S)

10.57

  

3.18

4.03

2.55

3.17

  

11. Mudstone (1)

15.10

2.92**

5.9

33.0

2–9

6.13

5.17

5.36 (S)

6.78

  

0.23

0.73

0.54

0.88

  

12. Marl ((1)

11.99

1.68**

4.5

36.5

5–9

7.43

7.14

6.94 (S)

7.87

  

2.93

2.64

2.44

3.37

  

13. Ignimbrite (1)

12.88

1.78**

8.3

43.5

8–18

10.88

7.24

7.18 (I)

10.82

  

2.58

1.06

1.12

2.52

  

14. Ignimbrite (1)

9.65

1.22**

14.8

47.0

8–18

13.30

7.91

7.73 (I)

12.87

  

1.5

6.89

7.07

1.93

  

15. Marl (1)

23.76

1.44**

11.2

41.0

5–9

9.47

16.5

13.22 (S)

9.62

  

1.73

5.3

2.02

1.58

  

16. Mudstone (1)

10.35

1.25**

4.5

31.0

2–9

5.48

8.28

7.78 (S)

6.24

  

0.98

3.78

3.28

1.74

  

17. Sandstone (2)

53.92

-

14.80

40.24

13–21

9.09

  

9.29

 

17.73

5.71

  

5.51

 

2.93

18. Marble (3)

94.30

-

5.50

33.20

6–12

6.20

  

6.84

 

8.20

0.7

  

1.34

 

2.70

19. Limestone (3)

62.60

-

7.10

35.80

9–15

7.15

  

7.63

 

11.83

0.05

  

0.53

 

4.73

20. Limestone (3)

116.80

-

21.80

53.20

9–15

19.79

  

18.05

 

10.77

2.01

  

3.75

 

11.03

21. Marble (4)

89.00

-

6.80

35.69

6–12

7.11

  

7.60

 

8.47

0.31

  

0.80

 

1.67

22 . Gneiss (4)

160.00

-

24.30

51.28

23–33

17.37

  

16.18

  

6.93

  

8.12

  

23 . Schist (4)

60.00

-

5.40

31.75

9–15

5.72

  

6.44

  

0.32

  

1.04

  

24. Granite (5)

126.68

-

41.61

60.37

29–35

35.30

  

28.53

 

37.97

6.31

  

13.08

 

3.64

25. Marble (6)

69.83

-

4.93

28.00

6–12

4.58

  

5.54

 

9.68

0.35

  

0.61

 

4.75

26. Marble (6)

119.30

-

7.16

34.40

6–12

6.63

  

7.19

 

7.21

0.534

  

0.03

 

0.04

27. Sandstone (7)

70.00

-

11.76

35.40

13–21

7.00

  

7.50

 

16.57

4.76

  

4.26

 

4.81

28. Quartzite (8)

310.00

-

68.00

65.00

17–23

58.78

  

40.58

  

9.22

  

27.42

  

29. Coal (8)

53.00

-

6.30

30.00

5–9

5.17

  

6.00

 

7.45

1.13

  

0.30

 

1.15

30. Sandstone (8)

122.00

-

22.70

52.00

13–21

18.22

  

16.84

  

4.48

  

5.86

  

31. Norite (8)

270.00

-

22.50

55.00

15–25

22.53

  

20.08

  

0.03

  

2.42

  

32. Limestone (9)

52.00

4.00**

8.60

-

9–15

-

13.00

10.98 (S)

 

15.60

12.16

 

4.40

2.38

 

7.00

3.56

33. Granite (9)

226.00

13.00**

29.00

-

29–35

-

17.38

15.25 (I)

 

23.05

33.82

 

11.62

13.75

 

5.95

4.82

34. Dolomite (10)

95.26

-

6.99

31.12

6–12

5.52

  

6.27

  

1.47

  

0.72

  

35. Granodiorite (10)

270.00

-

17.38

48.18

26–32

14.28

  

13.68

  

3.10

  

3.70

  

36. Mudstone (11)

173.20

-

22.40

53.10

2–9

19.65

  

17.94

  

2.75

  

4.46

  

37. Pyroclastic rock (11)

165.00

-

45.44

61.10

8–24

37.88

  

30.05

  

7.56

  

15.39

  

38. Granitic rock (12)

63.08

-

29.5

56.20

26–35

24.69

  

21.63

 

43.55

4.81

  

7.87

 

14.05

39. Granitic rock (12)

110.40

-

34.20

58.20

26–35

29.05

  

24.60

 

39.03

5.15

  

9.60

 

4.83

40. Granitic rock (12)

119.00

-

23.70

53.90

26–35

20.79

  

18.80

 

38.45

2.91

  

4.90

 

14.75

41. Granitic rock (12)

81.10

-

9.40

40.80

26–35

9.37

  

9.53

 

41.51

0.03

  

0.13

 

32.11

42. Granitic rock (12)

139.90

-

15.10

47.70

26–35

13.87

  

13.35

 

37.23

1.23

  

1.75

 

22.13

43. Granitic rock (12)

101.50

-

24.90

51.80

26–35

17.98

  

16.65

 

39.69

6.92

  

8.25

 

14.79

44. Granitic rock (12)

129.20

-

41.60

59.00

26–35

31.14

  

25.95

  

10.46

  

15.65

  

45. Andesite (13)

68.30

6.48**

10.16

-

20–30

-

10.54

9.81 (I)

    

0.38

0.35

   

46. Tuff (14)

74.66

8.18**

6.39

40.96

8–18

9.45

9.13

8.70 (I)

9.60

  

3.06

2.74

2.31

3.21

  

47. Tuff (14)

74.13

7.29**

6.75

41.45

8–18

9.71

10.17

9.52 (I)

9.82

  

2.96

3.42

2.77

3.07

  

48 . Sandstone (15)

136.60

14.90**

15.70

-

13–21

 

9.17

8.41 (S)

 

12.06

  

6.53

7.29

 

3.64

 

49. Schist (16)*

92.90

8.44

20.25

46.96

9–15

13.27

11.01

11.50 (M)

12.85

  

6.98

9.24

8.75

7.40

  

50. Quartz diorite (17)*

155.10

12.30

18.27

49.63

20–30

15.62

12.61

11.44 (I)

14.78

  

2.65

5.66

6.83

3.50

  

51. Granite (17)*

223.90

12.94

21.23

55.44

29–35

23.29

17.30

15.18 (I)

20.63

23.10

33.88

2.06

3.93

6.05

0.60

1.87

12.66

52. Sandstone (17)*

145.80

6.80

23.00

53.50

13–21

20.21

21.44

16.33 (S)

18.36

14.90

13.69

2.79

1.56

6.67

4.63

8.10

9.31

53. Limestone (17)*

56.40

5.40

14.66

45.73

9–15

12.35

10.44

9.28 (S)

12.07

14.34

3.16

2.31

4.22

5.38

2.59

0.32

11.50

54. Gneiss (17)*

326.80

15.90

17.87

54.59

23–33

21.86

20.55

19.44 (M)

19.59

  

3.99

2.69

1.58

1.73

  

55. Granodiorite (17)*

83.30

12.10

11.04

48.39

26–32

14.46

6.88

6.90 (I)

13.84

  

3.42

4.163

4.14

2.79

  

56 . Limestone (17)*

128.10

9.40

13.00

42.79

9–15

10.45

13.63

11.38 (S)

10.46

12.28

10.62

2.54

0.64

1.61

2.53

0.71

2.37

57. Quartz diorite (17)*

184.50

14.90

11.90

46.69

20–30

13.06

12.38

11.26(I)

12.67

  

1.16

0.48

0.64

0.77

  

58. Granite breccia (17)*

363.00

17.80

15.84

49.26

29–35

15.26

20.39

17.72 (I)

14.49

  

0.58

4.55

1.88

1.35

  

59. Gneiss (17)*

44.70

16.60

5.34

45.59

23–33

12.25

2.69

3.92 (M)

11.99

  

6.91

2.65

1.42

6.65

  

60. Diorite (17)*

58.80

12.80

6.10

39.37

20–30

8.67

4.59

4.94 (I)

8.93

  

2.57

1.51

1.16

2.83

  

61. Lamprophyre (17)*

140.40

12.50

8.17

40.22

No range

9.08

11.23

10.36 (I)

9.28

  

0.91

3.06

2.19

1.11

  

62. Quartz diorite (17)*

76.00

9.90

13.34

49.26

20–30

15.26

7.68

7.54 (I)

14.49

  

1.92

5.66

5.80

1.14

  

63. Agglomerate tuff (17)*

100.10

9.30

7.93

43.55

8–18

10.91

10.76

9.99 (I)

10.85

  

2.98

2.83

2.06

2.92

  

64. Quartzite (17)*

168.10

13.70

7.36

35.58

17–23

7.07

12.27

12.54 (M)

7.56

  

0.29

4.91

5.18

0.20

  

65. Andesite (17)*

225.20

9.70

6.23

33.04

20–30

6.15

23.22

20.09 (I)

6.79

  

0.08

16.99

13.87

0.57

  

66. Diorite (17)*

144.60

12.70

6.55

35.77

20–30

7.14

11.39

10.48 (I)

7.62

  

0.59

4.84

3.93

1.07

  

67. Basalt (17)*

99.00

10.80

4.31

35.58

20–30

7.07

9.17

8.73 (I)

7.56

  

2.76

4.86

4.42

3.25

  

68. Rhyolite (17)*

112.00

12.50

5.43

30.13

20–30

5.21

8.96

8.56 (I)

6.03

  

0.22

3.53

3.13

0.60

  

69. Sandston e (18)*

125.40

10.90

7.02

37.07

13–21

7.66

11.50

9.99 (S)

8.06

13.12

14.24

0.64

4.48

2.97

1.05

6.10

7.22

70. Sandstone (18)*

115.40

11.66

7.56

36.52

13–21

7.44

9.90

8.91 (S)

7.87

12.88

14.55

0.12

2.34

1.35

0.31

5.32

6.99

71. Quartzite (19)*

224.10

15.70

15.72

50.80

17–23

16.83

14.27

14.19 (M)

15.75

  

1.12

1.45

1.53

0.04

  

72. Granodiorite (20)*

230.00

17.00

18.15

51.59

26–32

17.73

13.53

12.17 (I)

16.46

  

0.42

4.62

5.98

1.69

  

73. Sandstone (21)*

104.00

6.01

13.36

40.55

13–21

9.25

17.30

13.73 (S)

9.42

15.40

14.95

4.12

3.93

0.36

3.94

2.04

1.58

74. Sandstone (22)*

127.50

8.04

9.11

41.04

13–21

9.50

15.86

12.81 (S)

9.64

14.24

14.18

0.39

6.75

3.70

0.53

5.13

5.07

75. Sandstone (23)*

42.00

3.00

14.12

43.25

13–21

10.72

14.00

11.62 (S)

10.69

18.58

18.92

3.40

0.12

2.50

3.43

4.46

4.80

76. Limestone (24)*

186.20

8.14

5.32

40.39

9 –15

9.17

22.87

17.23 (S)

9.35

12.79

10.04

3.85

17.55

11.91

4.04

7.47

4.73

77. Marble (24)*

102.80

7.45

8.53

30.56

6 –12

5.34

13.80

13.80 (M)

6.13

10.63

7.82

3.19

5.28

5.28

2.39

2.10

0.70

78. Coal (25)*

6.90

0.83

15.13

30.98

5–9

5.47

8.31

7.80 (S)

6.24

24.06

31.04

9.66

6.82

7.33

8.89

8.93

15.91

79. Coal (25)*

13.20

0.76

10.33

31.5

5–9

5.64

17.37

13.77 (S)

6.37

25.10

19.71

4.69

7.04

3.44

3.96

14.76

9.38

80. Coal (25)*

51.40

3.41

4.21

31.29

5–9

5.57

15.07

12.31 (S)

6.32

12.21

7.61

1.36

10.86

8.10

2.11

8.00

3.40

81. Coal (25)*

23.90

2.07

8.73

31.29

5–9

5.57

11.55

10.02 (S)

6.32

15.52

13.01

3.16

2.82

1.29

2.41

6.79

4.28

82. Coal (25)*

21.80

1.79

8.67

31.08

5–9

5.50

12.18

10.44 (S)

6.26

16.64

13.88

3.17

3.51

1.77

2.41

7.96

5.20

83. Coal (25)*

21.70

2.45

10.03

35.58

5–9

7.07

8.86

8.19 (S)

7.56

14.31

13.92

2.96

1.17

1.84

2.47

4.28

3.89

84. Coal (25)*

15.70

2.69

12.40

33.79

5–9

6.41

5.84

5.92 (S)

7.01

13.68

17.46

5.99

6.56

6.481

5.39

1.28

5.06

85. Coal (25)*

23.60

0.76

10.10

34.67

5–9

6.73

31.05

22.37 (S)

7.27

25.10

13.13

3.37

20.95

12.27

2.83

15.00

3.03

86. Coal (25)*

15.90

0.62

8.92

33.84

5–9

6.43

25.65

18.96 (S)

7.02

27.67

17.31

2.49

16.74

10.05

1.89

18.76

8.39

87. Coal (25)*

10.40

0.89

12.76

32.38

5–9

5.93

11.69

10.11 (S)

6.61

23.27

23.29

6.83

1.07

2.65

6.16

10.50

10.53

88. Coal (25)*

30.30

1.10

8.87

33.64

5–9

6.36

27.55

20.15 (S)

6.96

21.02

11.02

2.51

18.68

11.28

1.91

12.15

2.15

89. Coal (25)*

13.50

1.10

10.42

33.94

5–9

6.46

12.27

10.50 (S)

7.05

21.02

19.41

3.96

1.85

0.08

3.37

10.60

8.99

90. Coal (25)*

25.40

1.10

9.09

35.01

5–9

6.85

23.09

17.36 (S)

7.38

21.02

12.47

2.24

14.00

8.27

1.71

11.93

3.38

91. Coal (25)*

13.70

0.69

12.94

32.22

5–9

5.87

19.86

15.34 (S)

6.56

26.29

19.21

7.07

6.92

2.40

6.38

13.35

6.27

92.. Coal (25)*

13.10

0.55

14.48

34.33

5–9

6.60

23.82

17.82 (S)

7.17

29.31

19.82

7.88

9.34

3.34

7.31

14.83

5.34

93. Coal (25)*

21.50

0.76

9.78

35.05

5–9

6.87

28.29

20.62 (S)

7.39

25.10

14.01

2.91

18.51

10.85

2.39

15.31

4.23

94. Coal (25)*

25.00

1.10

11.79

35.39

5–9

7.00

22.73

17.13 (S)

7.50

21.02

12.61

4.79

10.94

5.34

4.29

9.22

0.82

95. Coal (25)*

19.70

0.89

15.38

36.57

5–9

7.46

22.13

16.76 (S)

7.89

23.27

14.90

7.92

6.75

1.38

7.49

7.88

0.49

96. Sandstone (26)*

48.00

3.85

11.57

34.82

13–21

6.78

12.47

10.63 (S)

7.32

17.37

18.27

4.79

0.90

0.94

4.25

3.64

6.70

97. Sandstone (27)*

140.20

14.02

3.98

45.59

13–21

12.25

10.00

8.98 (S)

11.99

12.26

13.83

8.28

6.03

5.00

8.01

8.10

9.85

98. Sandstone (28)*

115.20

9.52

15.17

39.02

13–21

8.51

12.10

10.39 (S)

8.79

13.61

14.55

6.66

3.07

4.78

6.38

6.10

0.62

99. Sandstone (29)*

80.80

7.00

12.13

40.05

13–21

9.00

11.54

10.02 (S)

9.21

14.78

15.96

3.13

0.59

2.11

2.91

5.32

3.84

100. Sandstone (29)*

83.90

7.60

9.64

41.04

13–21

9.50

11.04

9.68 (S)

9.64

14.46

15.80

0.14

1.40

0.04

0.00

2.04

6.16

101. Sandstone (29)*

91.80

10.50

7.65

37.97

13–21

8.04

8.74

8.11 (S)

8.39

13.25

15.44

0.39

1.09

0.46

0.74

5.13

7.79

102. Sandstone (30)*

41.40

2.64

12.97

39.70

13–21

8.83

15.68

12.70 (S)

9.06

19.24

18.99

4.14

2.71

0.27

3.91

4.46

6.02

103 . Sandstone (30)*

57.20

2.67

10.51

37.07

13–21

7.66

21.42

16.32 (S)

8.06

19.18

17.46

2.85

10.91

5.81

2.45

5.80

6.95

104. Sandstone (30)*

44.30

2.86

16.76

42.94

13–21

10.54

15.49

12.58 (S)

10.54

18.82

18.66

6.22

1.27

4.18

6.22

8.28

1.90

105. Sandstone (30)*

95.50

6.31

13.38

43.85

13–21

11.09

15.13

12.35 (S)

11.01

15.20

15.28

2.29

1.75

1.03

2.37

1.57

1.90

106. Sandstone (30)*

179.10

11.06

9.74

39.03

13–21

8.52

16.19

13.03 (S)

8.80

13.07

12.98

1.22

6.45

3.29

0.95

2.66

3.24

107 . Sandstone (30)*

97.00

5.39

17.80

45.87

13–21

12.45

18.00

14.17 (S)

12.16

15.86

15.22

5.35

0.20

3.63

5.64

4.82

2.58

108. Sandstone (30)*

92.00

6.67

17.38

45.00

13–21

11.84

13.79

11.49 (S)

11.64

14.98

15.43

5.54

3.59

5.89

5.74

5.60

1.95

109. Sandston e (31)*

79.30

3.10

19.07

40.05

13–21

9.00

25.58

18.92 (S)

9.21

18.42

16.04

10.07

6.52

0.15

9.85

6.26

3.03

110. Sandston e (32)*

24.30

3.29

7.22

39.03

13–21

8.52

7.39

7.13 (S)

8.80

18.13

21.81

1.30

0.17

0.09

1.58

8.67

14.60

111. Sandstone (33)*

81.30

8.72

19.81

50.91

13–21

16.95

9.32

8.51 (S)

15.85

13.93

15.93

2.86

10.49

11.30

3.97

2.07

3.88

112. Sandstone (33)*

62.80

8.82

17.79

51.81

13–21

17.99

7.12

6.93 (S)

16.66

13.89

17.04

0.20

10.67

10.86

1.13

1.82

0.75

113. Sandstone (33)*

69.30

9.59

16.55

52.67

13–21

19.07

7.23

7.01 (S)

17.50

13.58

16.61

2.52

9.32

9.54

0.95

3.32

0.06

114. Marble (34)*

28.90

4.48

7.09

33.04

6–12

6.15

6.45

7.65 (M)

6.79

14.87

15.72

0.94

0.64

0.56

0.30

7.78

8.63

115. Granite (34)*

81.60

6.94

34.03

53.90

29–35

20.79

11.76

10.77 (I)

18.80

30.76

41.46

13.24

22.27

23.26

15.23

3.27

7.43

116. Sandstone (35)*

67.70

4.79

12.82

42.64

13–21

10.37

14.13

11.71 (S)

10.39

16.38

16.71

2.45

1.31

1.11

2.44

3.55

3.89

117 . Quartzite (35)*

103.40

9.97

12.93

50.22

17–23

16.21

10.37

10.97 (M)

15.26

  

3.29

2.56

1.96

2.33

  

118. Limestone (36)*

68.00

8.50

10.52

44.30

9–15

11.38

8.00

7.58 (S)

11.25

12.63

11.68

0.86

2.52

2.94

0.73

2.12

1.17

119. Carbonatite (37)

113.06

9.05**

12.45

47.32

No range

13.56

12.49

11.35 (I)

13.09

  

1.11

0.04

1.10

0.64

  

120. Syenite (37)

90.74

7.53**

16.60

49.41

No range

15.40

12.05

11.00 (I)

14.60

  

1.20

4.55

5.60

2.00

  

121. Carbonatite and Syenite (37)

110.36

8.75**

13.01

47.65

No range

13.83

12.61

11.44 (I)

13.31

  

0.82

0.40

1.57

0.30

  

122.. Amarelo Pais Granite (38)

85.45

6.65**

40.96

57.59

29–35

27.60

12.85

11.63 (I)

23.63

31.37

41.08

13.36

28.11

29.33

17.33

9.59

0.12

123. Blanco Mera Granite (38)

137.96

6.12**

37.82

59.52

29–35

32.62

22.54

19.52 (I)

26.89

32.60

37.33

5.20

15.28

18.30

10.93

5.22

0.49

124. Vilachan Granite (38)

122.65

6.93**

28.23

54.91

29–35

22.38

17.70

15.51 (I)

19.97

30.78

38.22

5.85

10.53

12.72

8.26

2.55

9.99

125. Dolerite (39)

141.10

9.60

18.30

55.50

No range

23.39

14.70

13.09 (I)

20.71

  

5.09

3.60

5.21

2.41

  

Average absolute prediction error

 

3.23

5.54

4.74

3.75

6.41

5.97

  1. (1) Erguler (2007); (2) Masoumi (2013) (He et al. 2020); (3) Walton et al. 2015); (4) Kumar et al. (2010) (He et al. 2020); (5) Arzua et al. (2014); (6) Yang et al. (2008); (7) Yang et al. (2012) (8) Yumlu and Ozbay (1995); (9) Carter et al. (1991); (10) Mehrishal et al. (2015); (11) Winn et al. (2017); (12) Muralha and Lamas (2014); (13) Sari (2012); (14) Yasar (2020); (15) Bell and Lindsay (1999); (16) Barat (1995); (17) Betourney et al. (1991); (18) Borecki et al. (1982); (19) Chan et al. (1972); (20) Dayre and Giraud (1986); (21) Dlugosz et al. (1981); (22) Everling (1960); (23) Glushko and Kirnichanskiy (1974); (24) Gnirk and Cheatham (1965); (25) Hobbs (1964); (26) Hossaini and Vutukuri (1993); (27) Ilnitskaya et al. (1969); (28) Kuntysh (1964); (29) Kwasniewski (1983); (30) Misra (1972); (31) Murrel (1965); (32) Ramamurthy (1989); (33) Rao et al. (1983); (34) Schwartz (1964); (35) Singh et al. (1992); (36) Stowe (1969); (37) Heidarzadeh et al. (2021); (38) Arzua and Alejano (2003); (39) Bell and Jermy (2000)
  2. S sedimentary rock, I igneous rock, M metamorphic rock, No range range for mi in the guideline is not available
  3. *The data obtained from Sheorey (1997)’s database
  4. **σt values determined from the Brazilian Tensile Strength (BTS) test. 1.20: Lowest and average absolute prediction errors

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Karakul, H., Ulusay, R. A new internal friction angle–based approach for estimating Hoek–Brown constant mi and its comparison with those estimated from some current methods. Bull Eng Geol Environ 81, 316 (2022). https://doi.org/10.1007/s10064-022-02820-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10064-022-02820-x

Keywords

Navigation