Skip to main content
Log in

A DNA barcode library for Korean Chironomidae (Insecta: Diptera) and indexes for defining barcode gap

  • Published:
Molecules and Cells

Abstract

Non-biting midges (Diptera: Chironomidae) are a diverse population that commonly causes respiratory allergies in humans. Chironomid larvae can be used to indicate freshwater pollution, but accurate identification on the basis of morphological characteristics is difficult. In this study, we constructed a mitochondrial cytochrome c oxidase subunit I (COI)-based DNA barcode library for Korean chironomids. This library consists of 211 specimens from 49 species, including adults and unidentified larvae. The interspecies and intraspecies COI sequence variations were analyzed. Sophisticated indexes were developed in order to properly evaluate indistinct barcode gaps that are created by insufficient sampling on both the interspecies and intraspecies levels and by variable mutation rates across taxa. In a variety of insect datasets, these indexes were useful for re-evaluating large barcode datasets and for defining COI barcode gaps. The COI-based DNA barcode library will provide a rapid and reliable tool for the molecular identification of Korean chironomid species. Furthermore, this reverse-taxonomic approach will be improved by the continuous addition of other speceis’ sequences to the library.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Aagaard, K., Solem, J.O., Bongard, T., and Hanssen, O. (2004). Studies of aquatic insects in the Atna River 1987–2002. Hydrobiologia 521, 87–105.

    Article  Google Scholar 

  • Al-Shami, S., Rawi, C.S.M., Nor, S.A.M., Ahmad, A.H., and Ali, A. (2010). Morphological deformities in Chironomus spp. (Diptera: Chironomidae) larvae as a tool for impact assessment of anthropogenic and environmental stresses on three rivers in the Juru River System, Penang, Malaysia. Environ. Entomol. 39, 210–222.

    Article  PubMed  Google Scholar 

  • Baur, X. (1992). Chironomid midge allergy. Arerugi 41, 81–85.

    PubMed  CAS  Google Scholar 

  • Bensasson, D., Zhang, D., Hartl, D.L., and Hewitt, G.M. (2001). Mitochondrial pseudogenes: evolution’s misplaced witnesses. Trends. Ecol. Evol. 16, 314–321.

    Article  PubMed  Google Scholar 

  • Blaxter, M., Mann, J., Chapman, T., Thomas, F., Whitton, C., Floyd, R., and Abebe, E. (2005). Defining operational taxonomic units using DNA barcode data. Phil. Trans. R. Soc. B 360, 1935–1943.

    Article  PubMed  CAS  Google Scholar 

  • Carew, M.E., Pettigrove, V., and Hoffmann, A.A. (2005). The utility of DNA markers in classical taxonomy: using cytochrome oxidase I markers to differentiate Australian Cladopelma (Diptera: Chironomidae) midges. Ann. Entomol. Soc. Am. 98, 587–594.

    Article  CAS  Google Scholar 

  • Deagle, B.E., Chiaradia, A., McInnes, J., and Jarman, S.N. (2010). Pyrosequencing faecal DNA to determine diet of little penguins: is what goes in what comes out? Conserv. Genet. 11, 2039–2048.

    Article  Google Scholar 

  • Edgar, R.C. (2004). MUSCLE: multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Res. 32, 1792–1797.

    Article  PubMed  CAS  Google Scholar 

  • Ekrem, T., Willassen, E., and Stur, E. (2007). A comprehensive DNA sequence library is essential for identification with DNA barcodes. Mol. Phylogenet. Evol. 43, 530–542.

    Article  PubMed  CAS  Google Scholar 

  • Folmer, O., Black, M., Hoeh, W., Lutz, R., and Vrijenhoek, R. (1994). DNA primers for amplification of mitochondrial cytochrome c oxidase subunit I from diverse metazoan invertebrates. Mol. Mar. Biol. Biotech. 3, 294–299.

    CAS  Google Scholar 

  • Galtier, N., Nabholz, B., Glemin, S., and Hurst, G.D.D. (2009). Mitochondrial DNA as a marker of molecular diversity: a reappraisal. Mol. Ecol. 18, 4541–4550.

    Article  PubMed  CAS  Google Scholar 

  • Hebert, P.D.N., and Gregory, T.R. (2005). The promise of DNA barcoding for taxonomy. Syst. Biol. 54, 852–859.

    Article  PubMed  Google Scholar 

  • Hebert, P.D.N., Ratnasingham, S., and deWaard, J.R. (2003). Barcoding animal life: cytochrome c oxidase subunit 1 divergences among closely related species. Proc. R. Soc. Lond. B 270, 96–99.

    Article  Google Scholar 

  • Jukes, T.H., and Cantor, C.R. (1969). Evolution of protein molecules. In Mammalian Protein Metabolism. Munro H.H, ed. (New York: Academic Press), pp. 21–132.

    Google Scholar 

  • Kerr, K.C.R., Stoeckle, M.Y., Dove, C.J., Weigt, L.A., Francis, C.M., and Hebert, P.D.N. (2007). Comprehensive DNA barcode coverage of North American birds. Mol. Ecol. Notes 7, 535–543.

    Article  PubMed  CAS  Google Scholar 

  • Kim, S., Eo, H.S., Koo, H., Choi, J.K., and Kim, W. (2010). DNA Barcode-based molecular identification system for fish species. Mol. Cells 30, 507–512.

    Article  PubMed  Google Scholar 

  • Kim, S., Kim, C.B., Min, G.S., Suh, Y., Bhak, J., Woo, T., Koo, H., Choi, J.K., Shin, M.k., Jung, J., et al. (2011). Korea Barcode of Life Database System (KBOL). Animal Cells & Systems Published in Proceedings.

  • Kimura, M. (1980). A simple method for estimating evolutionary rate of base substitution through comparative studies of nucleotide sequences. J. Mol. Evol. 16, 111–120.

    Article  PubMed  CAS  Google Scholar 

  • Lewis, D.J. (1956). Chironomidae as a pest in the Northern Sudan. Acta Trop. 13, 142–158.

    PubMed  CAS  Google Scholar 

  • Markmann, M., and Tautz, D. (2005). Reverse taxonomy: an approach towards determining the diversity of meiobenthic organisms based on ribosomal RNA signature sequences. Philos. Trans. R. Soc. B Biol. Sci. 360, 1917–1924.

    Article  CAS  Google Scholar 

  • Martinez, E.A., Moore, B.C., Schaumloffel, J., and Dasgupta, N. (2004). Teratogenic versus mutagenic abnormalities in chironomid larvae exposed to zinc and lead. Arch. Environ. Contam. Toxicol. 47, 193–198.

    Article  PubMed  CAS  Google Scholar 

  • Meier, R., Shiyang, K., Vaidya, G., and Ng, P.K.L. (2006). DNA barcoding and taxonomy in Diptera: a tale of high intraspecific variability and low identification success. Syst. Biol. 55, 715–728.

    Article  PubMed  Google Scholar 

  • Meier, R., Zhang, G., and Ali, F. (2008). The use of mean instead of smallest interspecific distances exaggerates the size of the “barcoding gap” and leads to misidentification. Syst. Biol. 57, 809–813

    Article  PubMed  Google Scholar 

  • Meyer, C.P., and Paulay, G. (2005). DNA barcoding: error rates based on comprehensive sampling. PLoS Biol. 3, e422.

    Article  PubMed  Google Scholar 

  • Nielsen, R., and Matz, M. (2006). Statistical approaches for DNA barcoding. Syst. Biol. 55, 162–169.

    Article  PubMed  Google Scholar 

  • Park, M.H., Sim, C.J., Baek, J., and Min, G.S. (2007). Identification of genes suitable for DNA barcoding of morphologically indistinguishable Korean Halichondriidae sponges. Mol. Cells 23, 220–227.

    PubMed  CAS  Google Scholar 

  • Pauls, S.U., Blahnik, R.J., Zhou, X., Wardwell, C.T., and Holzenthal, R.W. (2010). DNA barcode data confirm new species and reveal cryptic diversity in Chilean Smicridea (Trichoptera: Hydropsychidae). J. North Am. Benthol. Soc. 29, 1058–1074.

    Article  Google Scholar 

  • Pfenninger, M., Nowak, C., Kley, C., Steinke, D., and Streit, B. (2007). Utility of DNA taxonomy and barcoding for the inference of larval community structure in morphologically cryptic Chironomus (Diptera) species. Mol. Ecol. 16, 1957–1968.

    Article  PubMed  CAS  Google Scholar 

  • Radulovici, A.E., Archambault, P., and Dufresne, F. (2010). DNA barcodes for marine biodiversity: moving fast forward? Diversity 2, 450–472.

    Article  CAS  Google Scholar 

  • Ree, H.I. (2009). One new and six unrecorded species of chironomidae (Insecta: Diptera) in Korea. Korean J. Syst. Zool. 25, 49–59.

    Article  Google Scholar 

  • Song, H., Buhay, J.E., Whiting, M.F., and Crandall, K.A. (2008). Many species in one: DNA barcoding overestimates the number of species when nuclear mitochondrial pseudogenes are coamplified. Proc. Natl. Acad. Sci. USA 105, 13486–13491.

    Article  PubMed  CAS  Google Scholar 

  • Steinke, D., Vences, M., Salzburger, W., and Meyer, A. (2005). TaxI: a software tool for DNA barcoding using distance methods. Phil. Trans. R. Soc. B 360, 1975–1980.

    Article  PubMed  CAS  Google Scholar 

  • Tamura, K. (1992). Estimation of the number of nucleotide substitutions when there are strong transition-transversion and G+ Ccontent biases. Mol. Biol. Evol. 9, 678–687.

    PubMed  CAS  Google Scholar 

  • Tamura, K., and Nei, M. (1993). Estimation of the number of nucleotide substitutions in the control region of mitochondrial DNA in humans and chimpanzees. Mol. Biol. Evol. 10, 512–526.

    PubMed  CAS  Google Scholar 

  • Tamura, K., Dudley, J., Nei, M., and Kumar, S. (2007). MEGA4: molecular evolutionary genetics analysis (MEGA) software version 4.0. Mol. Biol. Evol. 24, 1596–1599.

    Article  PubMed  CAS  Google Scholar 

  • Tautz, D., Arctander, P., Minelli, A., Thomas, R.H., and Vogler, A.P. (2002). DNA points the way ahead in taxonomy. Nature 418, 479–479.

    Article  PubMed  CAS  Google Scholar 

  • Velle, G., Brooks, S.J., Birks, H.J.B., and Willassen, E. (2005). Chironomids as a tool for inferring Holocene climate: an assessment based on six sites in southern Scandinavia. Quaternary Sci. Rev. 24, 1429–1462.

    Article  Google Scholar 

  • Wiemers, M., and Fiedler, K. (2007). Does the DNA barcoding gap exist? a case study in blue butterflies (Lepidoptera: Lycaenidae). Front. Zool. 4, 8–16.

    Article  PubMed  Google Scholar 

  • Wright, J.F. (1984). The chironomid larvae of a small chalk stream in Berkshire, England. Ecol. Entomol. 9, 231–238.

    Article  Google Scholar 

  • Yoo, H.S., Eah, J.Y., Kim, J.S., Kim, Y.J., Min, M.S., Paek, W.K., Lee, H., and Kim, C.B. (2006). DNA barcoding Korean birds. Mol. Cells 22, 323–327.

    PubMed  CAS  Google Scholar 

  • Zeale, M.R.K., Butlin, R.K., Barker, G.L.A., Lees, D.C., and Jones, G. (2010). Taxon-specific PCR for DNA barcoding arthropod prey in bat faeces. Mol. Ecol. Notes 11, 236–244.

    Google Scholar 

  • Zhou, X., Adamowicz, S.J., Jacobus, L.M., DeWalt, R.E., and Hebert, P.D.N. (2009). Towards a comprehensive barcode library for arctic life-Ephemeroptera, Plecoptera, and Trichoptera of Churchill, Manitoba, Canada. Front. Zool. 6, 30.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Won Kim.

About this article

Cite this article

Kim, S., Song, KH., Ree, HI. et al. A DNA barcode library for Korean Chironomidae (Insecta: Diptera) and indexes for defining barcode gap. Mol Cells 33, 9–17 (2012). https://doi.org/10.1007/s10059-012-2151-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10059-012-2151-2

Keywords

Navigation