Skip to main content
Log in

Compartmentalization of vertebrate optic neuroephithelium: External cues and transcription factors

  • Minireview
  • Published:
Molecules and Cells

Abstract

The vertebrate eye is a laterally extended structure of the forebrain. It develops through a series of events, including specification and regionalization of the anterior neural plate, evagination of the optic vesicle (OV), and development of three distinct optic structures: the neural retina (NR), optic stalk (OS), and retinal pigment epithelium (RPE). Various external signals that act on the optic neuroepithelium in a spatial- and temporal-specific manner control the fates of OV subdomains by inducing localized expression of key transcription factors. Investigating the mechanisms underlying compartmentalization of these distinct optic neuroepithelium-derived tissues is therefore not only important from the standpoint of accounting for vertebrate eye morphogenesis, it is also helpful for understanding the fundamental basis of fate determination of other neuroectoderm- derived tissues. This review focuses on the molecular signatures of OV subdomains and the external factors that direct the development of tissues originating from the OV.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Ando, H., Kobayashi, M., Tsubokawa, T., Uyemura, K., Furuta, T., and Okamoto, H. (2005). Lhx2 mediates the activity of Six3 in zebrafish forebrain growth. Dev. Biol. 287, 456–468.

    Article  PubMed  CAS  Google Scholar 

  • Andreazzoli, M., Gestri, G., Angeloni, D., Menna, E., and Barsacchi, G. (1999). Role of Xrx1 in Xenopus eye and anterior brain development. Development 126, 2451–2460.

    PubMed  CAS  Google Scholar 

  • Amato, M.A., Boy, S., and Perron, M. (2004). Hedgehog signaling in vertebrate eye development: a growing puzzle. Cell Mol. Life Sci. 61, 899–910.

    Article  PubMed  CAS  Google Scholar 

  • Ashery-Padan, R., and Gruss, P. (2001). Pax6 lights-up the way for eye development. Curr. Opin. Cell Biol. 13, 706–714.

    Article  PubMed  CAS  Google Scholar 

  • Barabino, S.M., Spada, F., Cotelli, F., and Boncinelli, E. (1997). Inactivation of the zebrafish homologue of Chx10 by antisense oligonucleotides causes eye malformations similar to the ocular retardation phenotype. Mech. Dev. 63, 133–143.

    Article  PubMed  CAS  Google Scholar 

  • Barbieri, A.M., Lupo, G., Bulfone, A., Andreazzoli, M., Mariani, M., Fougerousse, F., Consalez, G.G., Borsani, G., Beckmann, J.S., Barsacchi, G., et al. (1999). A homeobox gene, vax2, controls the patterning of the eye dorsoventral axis. Proc. Natl. Acad. Sci. USA 96, 10729–10734.

    Article  PubMed  CAS  Google Scholar 

  • Baumer, N., Marquardt, T., Stoykova, A., Spieler, D., Treichel, D., Ashery-Padan, R., and Gruss, P. (2003). Retinal pigmented epithelium determination requires the redundant activities of Pax2 and Pax6. Development 130, 2903–2915.

    Article  PubMed  CAS  Google Scholar 

  • Behesti, H., Holt, J.K., and Sowden, J.C. (2006). The level of BMP4 signaling is critical for the regulation of distinct T-box gene expression domains and growth along the dorso-ventral axis of the optic cup. BMC Dev. Biol. 6, 62.

    Article  PubMed  CAS  Google Scholar 

  • Belecky-Adams, T., Tomarev, S., Li, H.S., Ploder, L., McInnes, R.R., Sundin, O., and Adler, R. (1997). Pax-6, Prox 1, and Chx10 homeobox gene expression correlates with phenotypic fate of retinal precursor cells. Invest Ophthalmol. Vis. Sci. 38, 1293–1303

    PubMed  CAS  Google Scholar 

  • Bellipanni, G., Murakami, T., Doerre, O.G., Andermann, P., and Weinberg, E.S. (2000). Expression of Otx homeodomain proteins induces cell aggregation in developing zebrafish embryos. Dev. Biol. 223, 339–353.

    Article  PubMed  CAS  Google Scholar 

  • Bertuzzi, S., Hindges, R., Mui, S.H., O’Leary, D.D., and Lemke, G. (1999). The homeodomain protein vax1 is required for axon guidance and major tract formation in the developing forebrain. Genes Dev. 13, 3092–3105.

    Article  PubMed  CAS  Google Scholar 

  • Bovolenta, P., Mallamaci, A., Briata, P., Corte, G., and Boncinelli, E. (1997). Implication of OTX2 in pigment epithelium determination and neural retina differentiation. J. Neurosci. 17, 4243–4252.

    PubMed  CAS  Google Scholar 

  • Bovolenta, P., Mallamaci, A., Briata, P., Corte, G., and Boncinelli, E. (1997). Implication of OTX2 in pigment epithelium determination and neural retina differentiation. J. Neurosci. 17, 4243–4252.

    PubMed  CAS  Google Scholar 

  • Bumsted, K.M., and Barnstable, C.J. (2000). Dorsal retinal pigment epithelium differentiates as neural retina in the microphthalmia (mi/mi) mouse. Invest. Ophthalmol. Vis. Sci. 41, 903–908.

    PubMed  CAS  Google Scholar 

  • Cavodeassi, F., Carreira-Barbosa, F., Young, R.M., Concha, M.L., Allende, M.L., Houart, C., Tada, M., and Wilson, S.W. (2005). Early stages of zebrafish eye formation require the coordinated activity of Wnt11, Fz5, and the Wnt/beta-catenin pathway. Neuron 47, 43–56.

    Article  PubMed  CAS  Google Scholar 

  • Cepko, C.L., Austin, C.P., Yang, X., Alexiades, M., and Ezzeddine, D. (1996). Cell fate determination in the vertebrate retina. Proc. Natl. Acad. Sci. USA 93, 589–595.

    Article  PubMed  CAS  Google Scholar 

  • Chen, A.E., Ginty, D.D., and Fan, C.M. (2005). Protein kinase A signalling via CREB controls myogenesis induced by Wnt proteins. Nature 433, 317–322.

    Article  PubMed  CAS  Google Scholar 

  • Chiang, C., Litingtung, Y., Lee, E., Young, K.E., Corden, J.L., Westphal, H., and Beachy, P.A. (1996). Cyclopia and defective axial patterning in mice lacking Sonic hedgehog gene function. Nature 383, 407–413.

    Article  PubMed  CAS  Google Scholar 

  • Cho, S.H., and Cepko, C.L. (2006). Wnt2b/beta-catenin-mediated canonical Wnt signaling determines the peripheral fates of the chick eye. Development 133, 3167–3177.

    Article  PubMed  CAS  Google Scholar 

  • Chow, R.L., and Lang, R.A. (2001). Early eye development in vertebrates. Annu. Rev. Cell Dev. Biol. 17, 255–296.

    Article  PubMed  CAS  Google Scholar 

  • Crossley, P.H., Martinez, S., Ohkubo, Y., and Rubenstein, J.L. (2001). Coordinate expression of Fgf8, Otx2, Bmp4, and Shh in the rostral prosencephalon during development of the telencephalic and optic vesicles. Neuroscience 108, 183–206.

    Article  PubMed  CAS  Google Scholar 

  • de Iongh, R.U., Chen, Y., Kokkinos, M.I., and McAvoy, J.W. (2004). BMP and activin receptor expression in lens development. Mol. Vis. 10, 566–576.

    PubMed  Google Scholar 

  • de Iongh, R.U., Abud, H.E., and Hime, G.R. (2006). WNT/Frizzled signaling in eye development and disease. Front Biosci. 11, 2442–2464.

    Article  PubMed  Google Scholar 

  • Decembrini, S., Andreazzoli, M., Vignali, R., Barsacchi, G., and Cremisi, F. (2006). Timing the generation of distinct retinal cells by homeobox proteins. PLoS Biol. 4, e272.

    Article  PubMed  CAS  Google Scholar 

  • Dorsky, R.I., Raible, D.W., and Moon, R.T. (2000). Direct regulation of nacre, a zebrafish MITF homolog required for pigment cell formation, by the Wnt pathway. Genes Dev. 14, 158–162

    PubMed  CAS  Google Scholar 

  • Dressler, G.R., Deutsch, U., Chowdhury, K., Nornes, H.O., and Gruss, P. (1990). Pax2, a new murine paired-box-containing gene and its expression in the developing excretory system. Development 109, 787–795.

    PubMed  CAS  Google Scholar 

  • Dudley, A.T., and Robertson, E.J. (1997). Overlapping expression domains of bone morphogenetic protein family members potentially account for limited tissue defects in BMP7 deficient embryos. Dev. Dyn. 208, 349–362.

    Article  PubMed  CAS  Google Scholar 

  • Edlund, T., and Jessell, T.M. (1999). Progression from extrinsic to intrinsic signaling in cell fate specification: a view from the nervous system. Cell 96, 211–224.

    Article  PubMed  CAS  Google Scholar 

  • Esteve, P., Sandonis, A., Ibanez, C., Shimono, A., Guerrero, I., and Bovolenta, P. (2011). Secreted frizzled-related proteins are required for Wnt/beta-catenin signalling activation in the vertebrate optic cup. Development 138, 4179–4184.

    Article  PubMed  CAS  Google Scholar 

  • Fokina, V.M., and Frolova, E.I. (2006). Expression patterns of Wnt genes during development of an anterior part of the chicken eye. Dev. Dyn. 235, 496–505.

    Article  PubMed  CAS  Google Scholar 

  • Fuhrmann, S. (2010). Eye morphogenesis and patterning of the optic vesicle. Curr. Top Dev. Biol. 93, 61–84

    Article  PubMed  Google Scholar 

  • Fuhrmann, S., Chow, L., and Reh, T.A. (2000). Molecular control of cell diversification in the vertebrate retina. Results Probl. Cell Differ. 31, 69–91.

    PubMed  CAS  Google Scholar 

  • Fujimura, N., Taketo, M.M., Mori, M., Korinek, V., and Kozmik, Z. (2009). Spatial and temporal regulation of Wnt/beta-catenin signaling is essential for development of the retinal pigment epithelium. Dev. Biol. 334, 31–45.

    Article  PubMed  CAS  Google Scholar 

  • Furukawa, T., Kozak, C.A., and Cepko, C.L. (1997). rax, a novel paired-type homeobox gene, shows expression in the anterior neural fold and developing retina. Proc. Natl. Acad. Sci. USA 94, 3088–3093.

    Article  PubMed  CAS  Google Scholar 

  • Furuta, Y., and Hogan, B.L. (1998). BMP4 is essential for lens induction in the mouse embryo. Genes Dev. 12, 3764–3775.

    Article  PubMed  CAS  Google Scholar 

  • Furimsky, M., and Wallace, V.A. (2006). Complementary Gli activity mediates early patterning of the mouse visual system. Dev. Dyn. 235, 594–606.

    Article  PubMed  CAS  Google Scholar 

  • Galy, A., Neron, B., Planque, N., Saule, S., and Eychene, A. (2002). Activated MAPK/ERK kinase (MEK-1). induces transdifferentiation of pigmented epithelium into neural retina. Dev. Biol. 248, 251–264.

    CAS  Google Scholar 

  • Graw, J. (2010). Eye development. Curr. Top Dev. Biol. 90, 343–386.

    Article  PubMed  Google Scholar 

  • Hallonet, M., Hollemann, T., Wehr, R., Jenkins, N.A., Copeland, N.G., Pieler, T., and Gruss, P. (1998). Vax1 is a novel homeobox-containing gene expressed in the developing anterior ventral forebrain. Development 125, 2599–2610.

    PubMed  CAS  Google Scholar 

  • Hallonet, M., Hollemann, T., Pieler, T., and Gruss, P. (1999). Vax1, a novel homeobox-containing gene, directs development of the basal forebrain and visual system. Genes Dev. 13, 3106–3114.

    Article  PubMed  CAS  Google Scholar 

  • Hammerschmidt, M., Bitgood, M.J., and McMahon, A.P. (1996). Protein kinase A is a common negative regulator of Hedgehog signaling in the vertebrate embryo. Genes Dev. 10, 647–658.

    Article  PubMed  CAS  Google Scholar 

  • Harris, W.A. (1997). Cellular diversification in the vertebrate retina. Curr. Opin. Genet. Dev. 7, 651–658.

    Article  PubMed  CAS  Google Scholar 

  • He, J., Sheng, T., Stelter, A.A., Li, C., Zhang, X., Sinha, M., Luxon, B.A., and Xie, J. (2006). Suppressing Wnt signaling by the hedgehog pathway through sFRP-1. J. Biol. Chem. 281, 35598–35602.

    Article  PubMed  CAS  Google Scholar 

  • Heller, N., and Brandli, A.W. (1997). Xenopus Pax-2 displays multiple splice forms during embryogenesis and pronephric kidney development. Mech. Dev. 69, 83–104.

    Article  PubMed  CAS  Google Scholar 

  • Herbrand, H., Guthrie, S., Hadrys, T., Hoffmann, S., Arnold, H.H., Rinkwitz-Brandt, S., and Bober, E. (1998). Two regulatory genes, cNkx5-1 and cPax2, show different responses to local signals during otic placode and vesicle formation in the chick embryo. Development 125, 645–654.

    PubMed  CAS  Google Scholar 

  • Hill, R.E., Favor, J., Hogan, B.L., Ton, C.C., Saunders, G.F., Hanson, I.M., Prosser, J., Jordan, T., Hastie, N.D., and van Heyningen, V. (1991). Mouse small eye results from mutations in a paired-like homeobox-containing gene. Nature 354, 522–525.

    Article  PubMed  CAS  Google Scholar 

  • Hirsch, N., and Harris, W.A. (1997). Xenopus Pax-6 and retinal development. J. Neurobiol. 32, 45–61.

    Article  PubMed  CAS  Google Scholar 

  • Hodgkinson, C.A., Moore, K.J., Nakayama, A., Steingrimsson, E., Copeland, N.G., Jenkins, N.A., and Arnheiter, H. (1993). Mutations at the mouse microphthalmia locus are associated with defects in a gene encoding a novel basic-helix-loop-helix-zipper protein. Cell 74, 395–404.

    Article  PubMed  CAS  Google Scholar 

  • Horsford, D.J., Nguyen, M.T., Sellar, G.C., Kothary, R., Arnheiter, H., and McInnes, R.R. (2005). Chx10 repression of Mitf is required for the maintenance of mammalian neuroretinal identity. Development 132, 177–187.

    Article  PubMed  CAS  Google Scholar 

  • Hyer, J., Mima, T., and Mikawa, T. (1998). FGF1 patterns the optic vesicle by directing the placement of the neural retina domain. Development 125, 869–877.

    PubMed  CAS  Google Scholar 

  • Iwakiri, R., Kobayashi, K., Okinami, S., and Kobayashi, H. (2005). Suppression of Mitf by small interfering RNA induces dedifferentiation of chick embryonic retinal pigment epithelium. Exp. Eye Res. 81, 15–21.

    Article  PubMed  CAS  Google Scholar 

  • Jessell, T.M. (2000). Neuronal specification in the spinal cord: inductive signals and transcriptional codes. Nat. Rev. Genet. 1, 20–29.

    Article  PubMed  CAS  Google Scholar 

  • Katanaev, V.L., Ponzielli, R., Semeriva, M., and Tomlinson, A. (2005). Trimeric G protein-dependent frizzled signaling in Drosophila. Cell 120, 111–122.

    Article  PubMed  CAS  Google Scholar 

  • Kennedy, B.N., Stearns, G.W., Smyth, V.A., Ramamurthy, V., van Eeden, F., Ankoudinova, I., Raible, D., Hurley, J.B., and Brockerhoff, S.E. (2004). Zebrafish rx3 and mab21l2 are required during eye morphogenesis. Dev. Biol. 270, 336–349.

    Article  PubMed  CAS  Google Scholar 

  • Kiecker, C., and Lumsden, A. (2005). Compartments and their boundaries in vertebrate brain development. Nat. Rev. Neurosci. 6, 553–564.

    Article  PubMed  CAS  Google Scholar 

  • Kim, J.W., and Lemke, G. (2006). Hedgehog-regulated localization of Vax2 controls eye development. Genes Dev. 20, 2833–2847.

    Article  PubMed  CAS  Google Scholar 

  • Kim, H.S., Shin, J., Kim, S.H., Chun, H.S., Kim, J.D., Kim, Y.S., Kim, M.J., Rhee, M., Yeo, S.Y., and Huh, T.L. (2007). Eye field requires the function of Sfrp1 as a Wnt antagonist. Neurosci. Lett. 414, 26–29.

    Article  PubMed  CAS  Google Scholar 

  • Koike, C., Nishida, A., Ueno, S., Saito, H., Sanuki, R., Sato, S., Furukawa, A., Aizawa, S., Matsuo, I., Suzuki, N., et al. (2007). Functional roles of Otx2 transcription factor in postnatal mouse retinal development. Mol. Cell. Biol. 27, 8318–8329.

    Article  PubMed  CAS  Google Scholar 

  • Kondoh, H., Uchikawa, M., Yoda, H., Takeda, H., Furutani-Seiki, M., and Karlstrom, R.O. (2000). Zebrafish mutations in Gli-mediated hedgehog signaling lead to lens transdifferentiation from the adenohypophysis anlage. Mech. Dev. 96, 165–174.

    Article  PubMed  CAS  Google Scholar 

  • Koshiba-Takeuchi, K., Takeuchi, J.K., Matsumoto, K., Momose, T., Uno, K., Hoepker, V., Ogura, K., Takahashi, N., Nakamura, H., Yasuda, K., et al. (2000). Tbx5 and the retinotectum projection. Science 287, 134–137.

    Article  PubMed  CAS  Google Scholar 

  • Kumasaka, M., Sato, H., Sato, S., Yajima, I., and Yamamoto, H. (2004). Isolation and developmental expression of Mitf in Xenopus laevis. Dev. Dyn. 230, 107–113.

    Article  PubMed  CAS  Google Scholar 

  • Lad, E.M., Cheshier, S.H., and Kalani, M.Y. (2009). Wnt-signaling in retinal development and disease. Stem Cells Dev. 18, 7–16.

    Article  PubMed  CAS  Google Scholar 

  • Leconte, L., Lecoin, L., Martin, P., and Saule, S. (2004). Pax6 interacts with cVax and Tbx5 to establish the dorsoventral boundary of the developing eye. J. Biol. Chem. 279, 47272–47277.

    Article  PubMed  CAS  Google Scholar 

  • Liu, I.S., Chen, J.D., Ploder, L., Vidgen, D., van der Kooy, D., Kalnins, V.I., and McInnes, R.R. (1994). Developmental expression of a novel murine homeobox gene (Chx10): evidence for roles in determination of the neuroretina and inner nuclear layer. Neuron 13, 377–393.

    Article  PubMed  CAS  Google Scholar 

  • Liu, H., Mohamed, O., Dufort, D., and Wallace, V.A. (2003). Characterization of Wnt signaling components and activation of the Wnt canonical pathway in the murine retina. Dev. Dyn. 227, 323–334.

    Article  PubMed  CAS  Google Scholar 

  • Liu, H., Thurig, S., Mohamed, O., Dufort, D., and Wallace, V.A. (2006). Mapping canonical Wnt signaling in the developing and adult retina. Invest. Ophthalmol. Vis. Sci. 47, 5088–5097.

    Article  PubMed  Google Scholar 

  • Liu, H., Xu, S., Wang, Y., Mazerolle, C., Thurig, S., Coles, B.L., Ren, J.C., Taketo, M.M., van der Kooy, D., and Wallace, V.A. (2007). Ciliary margin transdifferentiation from neural retina is controlled by canonical Wnt signaling. Dev. Biol. 308, 54–67.

    Article  PubMed  CAS  Google Scholar 

  • Macdonald, R., Barth, K.A., Xu, Q., Holder, N., Mikkola, I., and Wilson, S.W. (1995). Midline signalling is required for Pax gene regulation and patterning of the eyes. Development 121, 3267–3278.

    PubMed  CAS  Google Scholar 

  • Martinez-Morales, J.R., Signore, M., Acampora, D., Simeone, A., and Bovolenta, P. (2001). Otx genes are required for tissue specification in the developing eye. Development 128, 2019–2030.

    PubMed  CAS  Google Scholar 

  • Martinez-Morales, J.R., Dolez, V., Rodrigo, I., Zaccarini, R., Leconte, L., Bovolenta, P., and Saule, S. (2003). OTX2 activates the molecular network underlying retina pigment epithelium differentiation. J. Biol. Chem. 278, 21721–21731.

    Article  PubMed  CAS  Google Scholar 

  • Martinez-Morales, J.R., Rodrigo, I., and Bovolenta, P. (2004). Eye development: a view from the retina pigmented epithelium. Bioessays 26, 766–777.

    Article  PubMed  CAS  Google Scholar 

  • Masai, I., Yamaguchi, M., Tonou-Fujimori, N., Komori, A., and Okamoto, H. (2005). The hedgehog-PKA pathway regulates two distinct steps of the differentiation of retinal ganglion cells: the cell-cycle exit of retinoblasts and their neuronal maturation. Development 132, 1539–1553.

    Article  PubMed  CAS  Google Scholar 

  • Mathers, P.H., Grinberg, A., Mahon, K.A., and Jamrich, M. (1997). The Rx homeobox gene is essential for vertebrate eye development. Nature 387, 603–607.

    Article  PubMed  CAS  Google Scholar 

  • Matsuo, T., Osumi-Yamashita, N., Noji, S., Ohuchi, H., Koyama, E., Myokai, F., Matsuo, N., Taniguchi, S., Doi, H., Iseki, S., et al. (1993). A mutation in the Pax-6 gene in rat small eye is associated with impaired migration of midbrain crest cells. Nat. Genet. 3, 299–304.

    Article  PubMed  CAS  Google Scholar 

  • Miller, D.T., Read, R., Rusconi, J., and Cagan, R.L. (2000). The Drosophila primo locus encodes two low-molecular-weight tyrosine phosphatases. Gene 243, 1–9.

    Article  PubMed  CAS  Google Scholar 

  • Mochii, M., Mazaki, Y., Mizuno, N., Hayashi, H., and Eguchi, G. (1998). Role of Mitf in differentiation and transdifferentiation of chicken pigmented epithelial cell. Dev. Biol. 193, 47–62.

    Article  PubMed  CAS  Google Scholar 

  • Morcillo, J., Martinez-Morales, J.R., Trousse, F., Fermin, Y., Sowden, J.C., and Bovolenta, P. (2006). Proper patterning of the optic fissure requires the sequential activity of BMP7 and SHH. Development 133, 3179–3190.

    Article  PubMed  CAS  Google Scholar 

  • Mui, S.H., Hindges, R., O’Leary, D.D., Lemke, G., and Bertuzzi, S. (2002). The homeodomain protein Vax2 patterns the dorsoventral and nasotemporal axes of the eye. Development 129, 797–804.

    PubMed  CAS  Google Scholar 

  • Mui, S.H., Kim, J.W., Lemke, G., and Bertuzzi, S. (2005). Vax genes ventralize the embryonic eye. Genes Dev. 19, 1249–1259.

    Article  PubMed  CAS  Google Scholar 

  • Muller, F., Rohrer, H., and Vogel-Hopker, A. (2007). Bone morphogenetic proteins specify the retinal pigment epithelium in the chick embryo. Development 134, 3483–3493.

    Article  PubMed  CAS  Google Scholar 

  • Nguyen, M., and Arnheiter, H. (2000). Signaling and transcriptional regulation in early mammalian eye development: a link between FGF and MITF. Development 127, 3581–3591.

    PubMed  CAS  Google Scholar 

  • Nornes, H.O., Dressler, G.R., Knapik, E.W., Deutsch, U., and Gruss, P. (1990). Spatially and temporally restricted expression of Pax2 during murine neurogenesis. Development 109, 797–809.

    PubMed  CAS  Google Scholar 

  • Ogden, S.K., Fei, D.L., Schilling, N.S., Ahmed, Y.F., Hwa, J., and Robbins, D.J. (2008). G protein Galphai functions immediately downstream of Smoothened in Hedgehog signalling. Nature 456, 967–970.

    Article  PubMed  CAS  Google Scholar 

  • Ohkubo, Y., Chiang, C., and Rubenstein, J.L. (2002). Coordinate regulation and synergistic actions of BMP4, SHH and FGF8 in the rostral prosencephalon regulate morphogenesis of the telencephalic and optic vesicles. Neuroscience 111, 1–17.

    Article  PubMed  CAS  Google Scholar 

  • Oliver, G., Mailhos, A., Wehr, R., Copeland, N.G., Jenkins, N.A., and Gruss, P. (1995). Six3, a murine homologue of the sine oculis gene, demarcates the most anterior border of the developing neural plate and is expressed during eye development. Development 121, 4045–4055.

    PubMed  CAS  Google Scholar 

  • Pan, D., and Rubin, G.M. (1995). cAMP-dependent protein kinase and hedgehog act antagonistically in regulating decapentaplegic transcription in Drosophila imaginal discs. Cell 80, 543–552.

    Article  PubMed  CAS  Google Scholar 

  • Perron, M., Boy, S., Amato, M.A., Viczian, A., Koebernick, K., Pieler, T., and Harris, W.A. (2003). A novel function for Hedgehog signalling in retinal pigment epithelium differentiation. Development 130, 1565–1577.

    Article  PubMed  CAS  Google Scholar 

  • Pittack, C., Grunwald, G.B., and Reh, T.A. (1997). Fibroblast growth factors are necessary for neural retina but not pigmented epithelium differentiation in chick embryos. Development 124, 805–816.

    PubMed  CAS  Google Scholar 

  • Planque, N., Turque, N., Opdecamp, K., Bailly, M., Martin, P., and Saule, S. (1999). Expression of the microphthalmia-associated basic helix-loop-helix leucine zipper transcription factor Mi in avian neuroretina cells induces a pigmented phenotype. Cell Growth Differ. 10, 525–536.

    PubMed  CAS  Google Scholar 

  • Porter, F.D., Drago, J., Xu, Y., Cheema, S.S., Wassif, C., Huang, S.P., Lee, E., Grinberg, A., Massalas, J.S., Bodine, D., Alt, F., and Westphal, H. (1997). Lhx2, a LIM homeobox gene, is required for eye, forebrain, and definitive erythrocyte development. Development 124, 2935–2944.

    PubMed  CAS  Google Scholar 

  • Rowan, S., Chen, C.M., Young, T.L., Fisher, D.E., and Cepko, C.L. (2004). Transdifferentiation of the retina into pigmented cells in ocular retardation mice defines a new function of the homeodomain gene Chx10. Development 131, 5139–5152.

    Article  PubMed  CAS  Google Scholar 

  • Sakuta, H., Suzuki, R., Takahashi, H., Kato, A., Shintani, T., Iemura, S., Yamamoto, T.S., Ueno, N., and Noda, M. (2001). Ventroptin: a BMP-4 antagonist expressed in a double-gradient pattern in the retina. Science 293, 111–115.

    Article  PubMed  CAS  Google Scholar 

  • Schwarz, M., Cecconi, F., Bernier, G., Andrejewski, N., Kammandel, B., Wagner, M., and Gruss, P. (2000).. Spatial specification of mammalian eye territories by reciprocal transcriptional repression of Pax2 and Pax6. Development 127, 4325–4334.

    PubMed  CAS  Google Scholar 

  • Sehgal, R., Karcavich, R., Carlson, S., and Belecky-Adams, T.L. (2008). Ectopic Pax2 expression in chick ventral optic cup phenocopies loss of Pax2 expression. Dev. Biol. 319, 23–33.

    Article  PubMed  CAS  Google Scholar 

  • Simeone, A., Acampora, D., Mallamaci, A., Stornaiuolo, A., D’Apice, M.R., Nigro, V., and Boncinelli, E. (1993). A vertebrate gene related to orthodenticle contains a homeodomain of the bicoid class and demarcates anterior neuroectoderm in the gastrulating mouse embryo. EMBO J. 12, 2735–2747.

    PubMed  CAS  Google Scholar 

  • Stoykova, A., and Gruss, P. (1994). Roles of Pax-genes in developing and adult brain as suggested by expression patterns. J. Neurosci. 14, 1395–1412.

    PubMed  CAS  Google Scholar 

  • Suzuki, A., Ozono, K., Kubota, T., Kondou, H., Tachikawa, K., and Michigami, T. (2008). PTH/cAMP/PKA signaling facilitates canonical Wnt signaling via inactivation of glycogen synthase kinase- 3beta in osteoblastic Saos-2 cells. J. Cell Biochem. 104, 304–317

    Article  PubMed  CAS  Google Scholar 

  • Take-uchi, M., Clarke, J.D., and Wilson, S.W. (2003). Hedgehog signalling maintains the optic stalk-retinal interface through the regulation of Vax gene activity. Development 130, 955–968.

    Article  PubMed  CAS  Google Scholar 

  • Takeda, K., Yokoyama, S., Yasumoto, K., Saito, H., Udono, T., Takahashi, K., and Shibahara, S. (2003). OTX2 regulates expression of DOP Achrome tautomerase in human retinal pigment epithelium. Biochem. Biophys. Res. Commun. 300, 908–914.

    Article  PubMed  CAS  Google Scholar 

  • Tang, K., Xie, X., Park, J.I., Jamrich, M., Tsai, S., and Tsai, M.J. (2010). COUP-TFs regulate eye development by controlling factors essential for optic vesicle morphogenesis. Development 137, 725–734.

    Article  PubMed  CAS  Google Scholar 

  • Torres, M., Gomez-Pardo, E., and Gruss, P. (1996). Pax2 contributes to inner ear patterning and optic nerve trajectory. Development 122, 3381–3391.

    PubMed  CAS  Google Scholar 

  • Toy, J., Yang, J.M., Leppert, G.S., and Sundin, O.H. (1998). The optx2 homeobox gene is expressed in early precursors of the eye and activates retina-specific genes. Proc. Natl. Acad. Sci. USA 95, 10643–10648.

    Article  PubMed  CAS  Google Scholar 

  • Van Raay, T.J., and Vetter, M.L. (2004). Wnt/frizzled signaling during vertebrate retinal development. Dev. Neurosci. 26, 352–358.

    Article  PubMed  CAS  Google Scholar 

  • Van Raay, T.J., Moore, K.B., Iordanova, I., Steele, M., Jamrich, M., Harris, W.A., and Vetter, M.L. (2005). Frizzled 5 signaling governs the neural potential of progenitors in the developing Xenopus retina. Neuron 46, 23–36.

    Article  PubMed  CAS  Google Scholar 

  • Vogel-Hopker, A., Momose, T., Rohrer, H., Yasuda, K., Ishihara, L., and Rapaport, D.H. (2000). Multiple functions of fibroblast growth factor-8 (FGF-8). in chick eye development. Mech. Dev. 94, 25–36.

    CAS  Google Scholar 

  • Waschek, J.A., Dicicco-Bloom, E., Nicot, A., and Lelievre, V. (2006). Hedgehog signaling: new targets for GPCRs coupled to cAMP and protein kinase A. Ann. N Y Acad. Sci. 1070, 120–128

    Article  PubMed  CAS  Google Scholar 

  • Westenskow, P., Piccolo, S., and Fuhrmann, S. (2009). Betacatenin controls differentiation of the retinal pigment epithelium in the mouse optic cup by regulating Mitf and Otx2 expression. Development 136, 2505–2510.

    Article  PubMed  CAS  Google Scholar 

  • Westenskow, P.D., McKean, J.B., Kubo, F., Nakagawa, S., and Fuhrmann, S. (2010). Ectopic Mitf in the embryonic chick retina by co-transfection of beta-catenin and Otx2. Invest. Ophthalmol. Vis. Sci. 51, 5328–5335.

    Article  PubMed  Google Scholar 

  • Zhang, X.M., and Yang, X.J. (2001). Temporal and spatial effects of Sonic hedgehog signaling in chick eye morphogenesis. Dev. Biol. 233, 271–290.

    Article  PubMed  CAS  Google Scholar 

  • Zhao, S., and Overbeek, P.A. (1999). Tyrosinase-related protein 2 promoter targets transgene expression to ocular and neural crest-derived tissues. Dev. Biol. 216, 154–163.

    Article  PubMed  CAS  Google Scholar 

  • Zhao, S., Hung, F.C., Colvin, J.S., White, A., Dai, W., Lovicu, F.J., Ornitz, D.M., and Overbeek, P.A. (2001). Patterning the optic neuroepithelium by FGF signaling and Ras activation. Development 128, 5051–5060.

    PubMed  CAS  Google Scholar 

  • Zhou, X., Hollemann, T., Pieler, T., and Gruss, P. (2000). Cloning and expression of xSix3, the Xenopus homologue of murine Six3. Mech. Dev. 91, 327–330.

    Article  PubMed  CAS  Google Scholar 

  • Zuber, M.E., Perron, M., Philpott, A., Bang, A., and Harris, W.A. (1999). Giant eyes in Xenopus laevis by overexpression of XOptx2. Cell 98, 341–352.

    Article  PubMed  CAS  Google Scholar 

  • Zuber, M.E., Gestri, G., Viczian, A.S., Barsacchi, G., and Harris, W.A. (2003). Specification of the vertebrate eye by a network of eye field transcription factors. Development 130, 5155–5167.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jin Woo Kim.

About this article

Cite this article

Kim, HT., Kim, J.W. Compartmentalization of vertebrate optic neuroephithelium: External cues and transcription factors. Mol Cells 33, 317–324 (2012). https://doi.org/10.1007/s10059-012-0030-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10059-012-0030-5

Keywords

Navigation