Skip to main content

Abstract

Making of an eye requires commitment of cells to adopt an eye tissue fate by the process of retinal specification and determination. Basic molecular mechanisms to form an eye depend upon evolutionarily conserved processes and are controlled by a gene regulatory network called retinal determination network (RDN). The compound eye of the fruit fly, Drosophila melanogaster, has been widely used as an excellent experimental system to understand the genetic mechanisms occurring during eye specification and patterning. In Drosophila, the RDN not only controls eye field determination and patterning of visual anlage in the embryo but also regulates cell proliferation and retinal cell specification from eye-antennal disc at different larval stages. This chapter will highlight mechanisms of early eye specification and determination and will explain how each member of RDN and their genetic interactions guide early eye specification process. This chapter will also emphasize on how RDN controls extraretinal photoreceptor development in the Drosophila larval eye and adult ocelli and will draw attention to our understanding of how early eye fate is determined.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abu-Shaar M, Ryoo HD, Mann RS (1999) Control of the nuclear localization of Extradenticle by competing nuclear import and export signals. Genes Dev 13:935–945

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Aldaz S, Morata G, Azpiazu N (2003) The Pax-homeobox gene eyegone is involved in the subdivision of the thorax of Drosophila. Development 130:4473–4482

    Article  CAS  PubMed  Google Scholar 

  • Alexandre E, Graba Y, Fasano L, Gallet A, Perrin L, De Zulueta P, Pradel J, Kerridge S, Jacq B (1996) The Drosophila teashirt homeotic protein is a DNA-binding protein and modulo, a HOM-C regulated modifier of variegation, is a likely candidate for being a direct target gene. Mech Dev 59:191–204

    Article  PubMed  Google Scholar 

  • Ariss MM, Islam A, Critcher M, Zappia MP, Frolov MV (2018) Single cell RNA-sequencing identifies a metabolic aspect of apoptosis in Rbf mutant. Nat Commun 9:5024

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Atkins M, Mardon G (2009) Signaling in the third dimension: the peripodial epithelium in eye disc development. Dev Dyn 238:2139–2148

    Article  PubMed  PubMed Central  Google Scholar 

  • Aza-Blanc P, Kornberg TB (1999) Ci: a complex transducer of the hedgehog signal. Trends Gene 15:458–462

    Article  CAS  Google Scholar 

  • Azpiazu N, Morata G (2000) Function and regulation of homothorax in the wing imaginal disc of Drosophila. Development 127:2685–2693

    CAS  PubMed  Google Scholar 

  • Baker NE (2000) Notch signaling in the nervous system. Pieces still missing from the puzzle. Bioessays 22:264–273

    Article  CAS  PubMed  Google Scholar 

  • Baker LR, Weasner BM, Nagel A, Neuman SD, Bashirullah A, Kumar JP (2018) Eyeless/Pax6 initiates eye formation non-autonomously from the peripodial epithelium. Development 145:dev163329

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Baonza A, Freeman M (2002) Control of Drosophila eye specification by Wingless signalling. Development 129:5313–5322

    Article  CAS  PubMed  Google Scholar 

  • Bergmann A, Agapite J, McCall K, Steller H (1998) The Drosophila gene hid is a direct molecular target of Ras-dependent survival signaling. Cell 95:331–341

    Article  CAS  PubMed  Google Scholar 

  • Bessa J, Casares F (2005) Restricted teashirt expression confers eye-specific responsiveness to Dpp and Wg signals during eye specification in Drosophila. Development 132:5011–5020

    Article  CAS  PubMed  Google Scholar 

  • Bessa J, Gebelein B, Pichaud F, Casares F, Mann RS (2002) Combinatorial control of Drosophila eye development by eyeless, homothorax, and teashirt. Genes Dev 16:2415–2427

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bessa J, Carmona L, Casares F (2009) Zinc-finger paralogues tsh and tio are functionally equivalent during imaginal development in Drosophila and maintain their expression levels through auto- and cross-negative feedback loops. Dev Dyn 238:19–28

    Article  CAS  PubMed  Google Scholar 

  • Bhojwani J, Shashidhara LS, Sinha P (1997) Requirement of teashirt (tsh) function during cell fate specification in developing head structures in Drosophila. Dev Genes Evol 207:137–146

    Article  CAS  PubMed  Google Scholar 

  • Blackman RK, Sanicola M, Raftery LA, Gillevet T, Gelbart WM (1991) An extensive 3′ cis-regulatory region directs the imaginal disk expression of decapentaplegic, a member of the TGF-beta family in Drosophila. Development 111:657–666

    CAS  PubMed  Google Scholar 

  • Blair SS (1999) Eye development: Notch lends a handedness. Curr Biol 9:R356–R360

    Article  CAS  PubMed  Google Scholar 

  • Blair SS (2003) Genetic mosaic techniques for studying Drosophila development. Development 130:5065–5072

    Article  CAS  PubMed  Google Scholar 

  • Blanco J, Seimiya M, Pauli T, Reichert H, Gehring WJ (2009) Wingless and Hedgehog signaling pathways regulate orthodenticle and eyes absent during ocelli development in Drosophila. Dev Biol 329:104–115

    Article  CAS  PubMed  Google Scholar 

  • Blanco J, Pauli T, Seimiya M, Udolph G, Gehring WJ (2010) Genetic interactions of eyes absent, twin of eyeless and orthodenticle regulate sine oculis expression during ocellar development in Drosophila. Dev Biol 344:1088–1099

    Article  CAS  PubMed  Google Scholar 

  • Bolwig N (1946) Senses and sense organs of the anterior end of the house fly larvae. Vidensk Medd dansk naturh Forenh Kbh 109:192–196

    Google Scholar 

  • Bonini NM, Leiserson WM, Benzer S (1993) The eyes absent gene: genetic control of cell survival and differentiation in the developing Drosophila eye. Cell 72:379–395

    Article  CAS  PubMed  Google Scholar 

  • Bonini NM, Bui QT, Gray-Board GL, Warrick JM (1997) The Drosophila eyes absent gene directs ectopic eye formation in a pathway conserved between flies and vertebrates. Development 124:4819–4826

    CAS  PubMed  Google Scholar 

  • Bovolenta P, Mallamaci A, Boncinelli E (1996) Cloning and characterisation of two chick homeobox genes, members of the six/sine oculis family, expressed during eye development. Int J Dev Biol Suppl 1:73S–74S

    CAS  PubMed  Google Scholar 

  • Boyle M, Bonini N, DiNardo S (1997) Expression and function of clift in the development of somatic gonadal precursors within the Drosophila mesoderm. Development 124:971–982

    CAS  PubMed  Google Scholar 

  • Braid LR, Verheyen EM (2008) Drosophila nemo promotes eye specification directed by the retinal determination gene network. Genetics 180:283–299

    Article  PubMed  PubMed Central  Google Scholar 

  • Brand AH, Perrimon N (1993) Targeted gene expression as a means of altering cell fates and generating dominant phenotypes. Development 118:401–415

    CAS  PubMed  Google Scholar 

  • Brown NL, Patel S, Brzezinski J, Glaser T (2001) Math5 is required for retinal ganglion cell and optic nerve formation. Development 128:2497–2508

    CAS  PubMed  Google Scholar 

  • Bui QT, Zimmerman JE, Liu H, Bonini NM (2000) Molecular analysis of Drosophila eyes absent mutants reveals features of the conserved Eya domain. Genetics 155:709–720

    CAS  PubMed  PubMed Central  Google Scholar 

  • Cagan RL, Ready DF (1989a) The emergence of order in the Drosophila pupal retina. Dev Biol 136:346–362

    Article  CAS  PubMed  Google Scholar 

  • Cagan RL, Ready DF (1989b) Notch is required for successive cell decisions in the developing Drosophila retina. Genes Dev 3:1099–1112

    Article  CAS  PubMed  Google Scholar 

  • Campos-Ortega JA, Hartenstein V (1985) The embryonic development of Drosophila melanogaster. Springer, Berlin

    Book  Google Scholar 

  • Casares F, Mann RS (1998) Control of antennal versus leg development in Drosophila. Nature 392:723–726

    Article  CAS  PubMed  Google Scholar 

  • Casares F, Mann RS (2000) A dual role for homothorax in inhibiting wing blade development and specifying proximal wing identities in Drosophila. Development 127:1499–1508

    CAS  PubMed  Google Scholar 

  • Cavodeassi F, Diez Del Corral R, Campuzano S, Dominguez M (1999) Compartments and organising boundaries in the Drosophila eye: the role of the homeodomain Iroquois proteins. Development 126:4933–4942

    CAS  PubMed  Google Scholar 

  • Chang T, Mazotta J, Dumstrei K, Dumitrescu A, Hartenstein V (2001) Dpp and Hh signaling in the Drosophila embryonic eye field. Development 128:4691–4704

    CAS  PubMed  Google Scholar 

  • Chanut F, Heberlein U (1997) Role of decapentaplegic in initiation and progression of the morphogenetic furrow in the developing Drosophila retina. Development 124:559–567

    CAS  PubMed  Google Scholar 

  • Chao JL, Tsai YC, Chiu SJ, Sun YH (2004) Localized Notch signal acts through eyg and upd to promote global growth in Drosophila eye. Development 131:3839–3847

    Article  CAS  PubMed  Google Scholar 

  • Charlton-Perkins M, Cook TA (2010) Building a fly eye: terminal differentiation events of the retina, corneal lens, and pigmented epithelia. Curr Top Dev Biol 93:129–173

    Article  PubMed  PubMed Central  Google Scholar 

  • Chen R, Amoui M, Zhang Z, Mardon G (1997) Dachshund and eyes absent proteins form a complex and function synergistically to induce ectopic eye development in Drosophila. Cell 91:893–903

    Article  CAS  PubMed  Google Scholar 

  • Chen R, Halder G, Zhang Z, Mardon G (1999) Signaling by the TGF-beta homolog decapentaplegic functions reiteratively within the network of genes controlling retinal cell fate determination in Drosophila. Development 126:935–943

    CAS  PubMed  Google Scholar 

  • Cheyette BN, Green PJ, Martin K, Garren H, Hartenstein V, Zipursky SL (1994) The Drosophila sine oculis locus encodes a homeodomain-containing protein required for the development of the entire visual system. Neuron 12:977–996

    Article  CAS  PubMed  Google Scholar 

  • Chi N, Epstein JA (2002) Getting your Pax straight: Pax proteins in development and disease. Trends Genet 18:41–47

    Article  CAS  PubMed  Google Scholar 

  • Cho KO, Choi KW (1998) Fringe is essential for mirror symmetry and morphogenesis in the Drosophila eye. Nature 396:272–276

    Article  CAS  PubMed  Google Scholar 

  • Choi KW, Benzer S (1994) Rotation of photoreceptor clusters in the developing Drosophila eye requires the nemo gene. Cell 78:125–136

    Article  CAS  PubMed  Google Scholar 

  • Chow RL, Altmann CR, Lang RA, Hemmati-Brivanlou A (1999) Pax6 induces ectopic eyes in a vertebrate. Development 126:4213–4222

    CAS  PubMed  Google Scholar 

  • Christensen KL, Patrick AN, McCoy EL, Ford HL (2008) The six family of homeobox genes in development and cancer. Adv Cancer Res 101:93–126

    Article  CAS  PubMed  Google Scholar 

  • Clark IB, Boyd J, Hamilton G, Finnegan DJ, Jarman AP (2006) D-six4 plays a key role in patterning cell identities deriving from the Drosophila mesoderm. Dev Biol 294:220–231

    Article  CAS  PubMed  Google Scholar 

  • Cohen SM (1993) In: Bate M, Martinez Arias A (eds) Imaginal disc development. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY, pp 747–841

    Google Scholar 

  • Couderc JL, Godt D, Zollman S, Chen J, Li M, Tiong S, Cramton SE, Sahut-Barnola I, Laski FA (2002) The bric a brac locus consists of two paralogous genes encoding BTB/POZ domain proteins and acts as a homeotic and morphogenetic regulator of imaginal development in Drosophila. Development 129:2419–2433

    CAS  PubMed  Google Scholar 

  • Courey AJ, Huang JD (1995) The establishment and interpretation of transcription factor gradients in the Drosophila embryo. Biochim Biophys Acta 1261:1–18

    Article  PubMed  Google Scholar 

  • Crick FH, Lawrence PA (1975) Compartments and polyclones in insect development. Science 189:340–347

    Article  CAS  PubMed  Google Scholar 

  • Curtiss J, Mlodzik M (2000) Morphogenetic furrow initiation and progression during eye development in Drosophila: the roles of decapentaplegic, hedgehog and eyes absent. Development 127:1325–1336

    CAS  PubMed  Google Scholar 

  • Curtiss J, Halder G, Mlodzik M (2002) Selector and signalling molecules cooperate in organ patterning. Nat Cell Biol 4:E48–E51

    Article  CAS  PubMed  Google Scholar 

  • Curtiss J, Burnett M, Mlodzik M (2007) Distal antenna and distal antenna-related function in the retinal determination network during eye development in Drosophila. Dev Biol 306:685–702

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Czerny T, Halder G, Kloter U, Souabni A, Gehring WJ, Busslinger M (1999) Twin of eyeless, a second Pax-6 gene of Drosophila, acts upstream of eyeless in the control of eye development. Mol Cell 3:297–307

    Article  CAS  PubMed  Google Scholar 

  • Daniel A, Dumstrei K, Lengyel JA, Hartenstein V (1999) The control of cell fate in the embryonic visual system by atonal, tailless and EGFR signaling. Development 126:2945–2954

    CAS  PubMed  Google Scholar 

  • Das G, Reynolds-Kenneally J, Mlodzik M (2002) The atypical cadherin Flamingo links Frizzled and Notch signaling in planar polarity establishment in the Drosophila eye. Dev Cell 2:655–666

    Article  CAS  PubMed  Google Scholar 

  • Datta RR, Lurye JM, Kumar JP (2009) Restriction of ectopic eye formation by Drosophila teashirt and tiptop to the developing antenna. Dev Dyn 238:2202–2210

    Article  PubMed  PubMed Central  Google Scholar 

  • de Zulueta P, Alexandre E, Jacq B, Kerridge S (1994) Homeotic complex and teashirt genes co-operate to establish trunk segmental identities in Drosophila. Development 120:2287–2296

    PubMed  Google Scholar 

  • Desplan C (1997) Eye development: governed by a dictator or a junta? Cell 91:861–864

    Article  CAS  PubMed  Google Scholar 

  • Domingos PM, Brown S, Barrio R, Ratnakumar K, Frankfort BJ, Mardon G, Steller H, Mollereau B (2004) Regulation of R7 and R8 differentiation by the spalt genes. Dev Biol 273:121–133

    Article  CAS  PubMed  Google Scholar 

  • Dominguez M, Casares F (2005) Organ specification-growth control connection: new in-sights from the Drosophila eye-antennal disc. Dev Dyn 232:673–684

    Article  CAS  PubMed  Google Scholar 

  • Dominguez M, de Celis JF (1998) A dorsal/ventral boundary established by Notch controls growth and polarity in the Drosophila eye. Nature 396:276–278

    Article  CAS  PubMed  Google Scholar 

  • Dominguez M, Ferres-Marco D, Gutierrez-Avino FJ, Speicher SA, Beneyto M (2004) Growth and specification of the eye are controlled independently by Eyegone and Eyeless in Drosophila melanogaster. Nat Genet 36:31–39

    Article  CAS  PubMed  Google Scholar 

  • Dong PD, Chu J, Panganiban G (2000) Coexpression of the homeobox genes Distal-less and homothorax determines Drosophila antennal identity. Development 127:209–216

    CAS  PubMed  Google Scholar 

  • Dong PD, Chu J, Panganiban G (2001) Proximodistal domain specification and interactions in developing Drosophila appendages. Development 128:2365–2372

    CAS  PubMed  Google Scholar 

  • Dong PD, Dicks JS, Panganiban G (2002) Distal-less and homothorax regulate multiple targets to pattern the Drosophila antenna. Development 129:1967–1974

    CAS  PubMed  Google Scholar 

  • Driever W, Nusslein-Volhard C (1988) A gradient of bicoid protein in Drosophila embryos. Cell 54:83–93

    Article  CAS  PubMed  Google Scholar 

  • Duffy JB, Perrimon N (1994) The torso pathway in Drosophila: lessons on receptor tyrosine kinase signaling and pattern formation. Dev Biol 166:380–395

    Article  CAS  PubMed  Google Scholar 

  • Ekas LA, Baeg GH, Flaherty MS, Ayala-Camargo A, Bach EA (2006) JAK/STAT signaling promotes regional specification by negatively regulating wingless expression in Drosophila. Development 133:4721–4729

    Article  CAS  PubMed  Google Scholar 

  • Emerald BS, Curtiss J, Mlodzik M, Cohen SM (2003) Distal antenna and distal antenna related encode nuclear proteins containing pipsqueak motifs involved in antenna development in Drosophila. Development 130:1171–1180

    Article  CAS  PubMed  Google Scholar 

  • Erkner A, Gallet A, Angelats C, Fasano L, Kerridge S (1999) The role of Teashirt in proximal leg development in Drosophila: ectopic Teashirt expression reveals different cell behaviours in ventral and dorsal domains. Dev Biol 215:221–232

    Article  CAS  PubMed  Google Scholar 

  • Erkner A, Roure A, Charroux B, Delaage M, Holway N, Core N, Vola C, Angelats C, Pages F, Fasano L, Kerridge S (2002) Grunge, related to human Atrophin-like proteins, has multiple functions in Drosophila development. Development 129:1119–1129

    CAS  PubMed  Google Scholar 

  • Fasano L, Roder L, Core N, Alexandre E, Vola C, Jacq B, Kerridge S (1991) The gene teashirt is required for the development of Drosophila embryonic trunk segments and encodes a protein with widely spaced zinc finger motifs. Cell 64:63–79

    Article  CAS  PubMed  Google Scholar 

  • Finkelstein R, Smouse D, Capaci TM, Spradling AC, Perrimon N (1990) The orthodenticle gene encodes a novel homeo domain protein involved in the development of the Drosophila nervous system and ocellar visual structures. Genes Dev 4:1516–1527

    Article  CAS  PubMed  Google Scholar 

  • Fischbach KF, Heisenberg M (1981) Structural brain mutant of Drosophila melanogaster with reduced cell number in the medulla cortex and with normal optomotor yaw response. Proc Natl Acad Sci USA 78:1105–1109

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fischbach KF, Technau G (1984) Cell degeneration in the developing optic lobes of the sine oculis and small-optic-lobes mutants of Drosophila melanogaster. Dev Biol 104:219–239

    Article  CAS  PubMed  Google Scholar 

  • Fortini ME, Rebay I, Caron LA, Artavanis-Tsakonas S (1993) An activated Notch receptor blocks cell-fate commitment in the developing Drosophila eye. Nature 365:555–557

    Article  CAS  PubMed  Google Scholar 

  • Freeman M (1998) Complexity of EGF receptor signalling revealed in Drosophila. Curr Opin Genet Dev 8:407–411

    Article  CAS  PubMed  Google Scholar 

  • Gao S, Takemura SY, Ting CY, Huang S, Lu Z, Luan H, Rister J, Thum AS, Yang M, Hong ST, Wang JW, Odenwald WF, White BH, Meinertzhagen IA, Lee CH (2008) The neural substrate of spectral preference in Drosophila. Neuron 60:328–342

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Garcia-Bellido A, Merriam JR (1969) Cell lineage of the imaginal discs in Drosophila gynandromorphs. J Exp Zool 170:61–75

    Article  CAS  PubMed  Google Scholar 

  • Gaspar P, Almudi I, Nunes MDS, McGregor AP (2018) Human eye conditions: insights from the fly eye. Hum Genet 138(8–9):973–991

    PubMed  Google Scholar 

  • Gehring WJ (1996) The master control gene for morphogenesis and evolution of the eye. Genes Cells 1:11–15

    Article  CAS  PubMed  Google Scholar 

  • Gehring WJ (2002) The genetic control of eye development and its implications for the evolution of the various eye-types. Int J Dev Biol 46:65–73

    PubMed  Google Scholar 

  • Gehring WJ (2004) Historical perspective on the development and evolution of eyes and photoreceptors. Int J Dev Biol 48:707–717

    Article  PubMed  Google Scholar 

  • Gehring WJ, Ikeo K (1999) Pax 6: mastering eye morphogenesis and eye evolution. Trends Genet 15:371–377

    Article  CAS  PubMed  Google Scholar 

  • Gehring W, Seimiya M (2010) Eye evolution and the origin of Darwin’s eye prototype. Ital J Zool 77:124–136

    Article  CAS  Google Scholar 

  • Glaser T, Walton DS, Maas RL (1992) Genomic structure, evolutionary conservation and aniridia mutations in the human PAX6 gene. Nat Genet 2:232–239

    Article  CAS  PubMed  Google Scholar 

  • Granadino B, Gallardo ME, Lopez-Rios J, Sanz R, Ramos C, Ayuso C, Bovolenta P, Rodriguez de Cordoba S (1999) Genomic cloning, structure, expression pattern, and chromosomal location of the human SIX3 gene. Genomics 55:100–105

    Article  CAS  PubMed  Google Scholar 

  • Green P, Hartenstein AY, Hartenstein V (1993) The embryonic development of the Drosophila visual system. Cell Tissue Res 273:583–598

    Article  CAS  PubMed  Google Scholar 

  • Halder G, Callaerts P, Gehring WJ (1995) Induction of ectopic eyes by targeted expression of the eyeless gene in Drosophila. Science 267:1788–1792

    Article  CAS  PubMed  Google Scholar 

  • Halder G, Callaerts P, Flister S, Walldorf U, Kloter U, Gehring WJ (1998) Eyeless initiates the expression of both sine oculis and eyes absent during Drosophila compound eye development. Development 125:2181–2191

    CAS  PubMed  Google Scholar 

  • Hammond KL, Hanson IM, Brown AG, Lettice LA, Hill RE (1998) Mammalian and Drosophila dachshund genes are related to the Ski proto-oncogene and are expressed in eye and limb. Mech Dev 74:121–131

    Article  CAS  PubMed  Google Scholar 

  • Hanson IM (2001) Mammalian homologues of the Drosophila eye specification genes. Semin Cell Dev Biol 12:475–484

    Article  CAS  PubMed  Google Scholar 

  • Hanson I, Van Heyningen V (1995) Pax6: more than meets the eye. Trends Genet 11:268–272

    Article  CAS  PubMed  Google Scholar 

  • Hanson IM, Fletcher JM, Jordan T, Brown A, Taylor D, Adams RJ, Punnett HH, van Heyningen V (1994) Mutations at the PAX6 locus are found in heterogeneous anterior segment malformations including Peters’ anomaly. Nat Genet 6:168–173

    Article  CAS  PubMed  Google Scholar 

  • Hardie R (1985) Functional organization of the Fly Retina. Prog Sens Physiol 5:1–79

    Article  Google Scholar 

  • Hartenstein V (1988) Development of Drosophila larval sensory organs: spatiotemporal pattern of sensory neurones, peripheral axonal pathways and sensilla differentiation. Development 102:869–886

    Google Scholar 

  • Hartenstein V, Jan YN (1992) Studying Drosophila embryogenesis with P-lacZ enhancer trap lines. Roux’s Arch Dev Biol 201:194–220

    Article  Google Scholar 

  • Hayashi S, Hirose S, Metcalfe T, Shirras AD (1993) Control of imaginal cell development by the escargot gene of Drosophila. Development 118:105–115

    CAS  PubMed  Google Scholar 

  • Haynie JL, Bryant PJ (1986) Development of the eye-antenna imaginal disc and morphogenesis of the adult head in Drosophila melanogaster. J Exp Zool 237:293–308

    Article  CAS  PubMed  Google Scholar 

  • Hazelett DJ, Bourouis M, Walldorf U, Treisman JE (1998) Decapentaplegic and wingless are regulated by eyes absent and eyegone and interact to direct the pattern of retinal differentiation in the eye disc. Development 125:3741–3751

    CAS  PubMed  Google Scholar 

  • Heberlein U, Moses K (1995) Mechanisms of Drosophila retinal morphogenesis: the virtues of being progressive. Cell 81:987–990

    Article  CAS  PubMed  Google Scholar 

  • Heberlein U, Wolff T, Rubin GM (1993) The TGF beta homolog dpp and the segment polarity gene hedgehog are required for propagation of a morphogenetic wave in the Drosophila retina. Cell 75:913–926

    Article  CAS  PubMed  Google Scholar 

  • Heitzler P, Coulson D, Saenz-Robles MT, Ashburner M, Roote J, Simpson P, Gubb D (1993) Genetic and cytogenetic analysis of the 43A-E region containing the segment polarity gene costa and the cellular polarity genes prickle and spiny-legs in Drosophila melanogaster. Genetics 135:105–115

    CAS  PubMed  PubMed Central  Google Scholar 

  • Held LI (2002) Imaginal discs: the genetic and cellular logic of pattern formation. New York: Cambridge University Press, 39, 460

    Google Scholar 

  • Henderson KD, Isaac DD, Andrew DJ (1999) Cell fate specification in the Drosophila salivary gland: the integration of homeotic gene function with the DPP signaling cascade. Dev Biol 205:10–21

    Article  CAS  PubMed  Google Scholar 

  • Hill RE, Favor J, Hogan BL, Ton CC, Saunders GF, Hanson IM, Prosser J, Jordan T, Hastie ND, van Heyningen V (1991) Mouse small eye results from mutations in a paired-like homeobox-containing gene. Nature 354:522–525

    Article  CAS  PubMed  Google Scholar 

  • Hogan BL (1996) Bone morphogenetic proteins: multifunctional regulators of vertebrate development. Genes Dev 10:1580–1594

    Article  CAS  PubMed  Google Scholar 

  • Hoge MA (1915) Another gene in the fourth chromosome of Drosophila. Am Nat 49:47–49

    Article  Google Scholar 

  • Hu KG, Stark WS (1980) The roles of Drosophila ocelli and compound eyes in phototaxis. J Comp Physiol 135:85–95

    Article  Google Scholar 

  • Hu KG, Reichert H, Stark WS (1978) Electrophysiological characterization of Drosophila ocelli. J Comp Physiol 126:15–24

    Article  Google Scholar 

  • Ingham PW (1998) Transducing Hedgehog: the story so far. EMBO J 17:3505–3511

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ingham PW, McMahon AP (2001) Hedgehog signaling in animal development: paradigms and principles. Genes Dev 15:3059–3087

    Article  CAS  PubMed  Google Scholar 

  • Ingham PW, Nystedt S, Nakano Y, Brown W, Stark D, van den Heuvel M, Taylor AM (2000) Patched represses the Hedgehog signalling pathway by promoting modification of the Smoothened protein. Curr Biol 10:1315–1318

    Article  CAS  PubMed  Google Scholar 

  • Ishitani T, Hirao T, Suzuki M, Isoda M, Ishitani S, Harigaya K, Kitagawa M, Matsumoto K, Itoh M (2010) Nemo-like kinase suppresses Notch signalling by interfering with formation of the Notch active transcriptional complex. Nat Cell Biol 12:278–285

    Article  CAS  PubMed  Google Scholar 

  • Jacobsson L, Kronhamn J, Rasmuson-Lestander A (2009) The Drosophila Pax6 paralogs have different functions in head development but can partially substitute for each other. Mol Genet Genom 282:217–231

    Article  CAS  Google Scholar 

  • Jang CC, Chao JL, Jones N, Yao LC, Bessarab DA, Kuo YM, Jun S, Desplan C, Beckendorf SK, Sun YH (2003) Two Pax genes, eye gone and eyeless, act cooperatively in promoting Drosophila eye development. Development 130:2939–2951

    Article  CAS  PubMed  Google Scholar 

  • Jarman AP, Grell EH, Ackerman L, Jan LY, Jan YN (1994) Atonal is the proneural gene for Drosophila photoreceptors. Nature 369:398–400

    Article  CAS  PubMed  Google Scholar 

  • Jaw TJ, You LR, Knoepfler PS, Yao LC, Pai CY, Tang CY, Chang LP, Berthelsen J, Blasi F, Kamps MP, Sun YH (2000) Direct interaction of two homeoproteins, homothorax and extradenticle, is essential for EXD nuclear localization and function. Mech Dev 91:279–291

    Article  CAS  PubMed  Google Scholar 

  • Jiao R, Daube M, Duan H, Zou Y, Frei E, Noll M (2001) Headless flies generated by developmental pathway interference. Development 128:3307–3319

    CAS  PubMed  Google Scholar 

  • Jin M, Mardon G (2016) Distinct biochemical activities of eyes absent during Drosophila eye development. Sci Rep 6:23228

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jones NA, Kuo YM, Sun YH, Beckendorf SK (1998) The Drosophila Pax gene eye gone is required for embryonic salivary duct development. Development 125:4163–4174

    CAS  PubMed  Google Scholar 

  • Jordan T, Hanson I, Zaletayev D, Hodgson S, Prosser J, Seawright A, Hastie N, van Heyningen V (1992) The human PAX6 gene is mutated in two patients with aniridia. Nat Genet 1:328–332

    Article  CAS  PubMed  Google Scholar 

  • Jun S, Wallen RV, Goriely A, Kalionis B, Desplan C (1998) Lune/eye gone, a Pax-like protein, uses a partial paired domain and a homeodomain for DNA recognition. Proc Natl Acad Sci USA 95:13720–13725

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jurgens G, Hartenstein V (1993) The terminal regions of the body pattern. In: The development of Drosophila melanogaster, vol 1. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY, pp 687–746

    Google Scholar 

  • Kammermeier L, Leemans R, Hirth F, Flister S, Wenger U, Walldorf U, Gehring WJ, Reichert H (2001) Differential expression and function of the Drosophila Pax6 genes eyeless and twin of eyeless in embryonic central nervous system development. Mech Dev 103:71–78

    Article  CAS  PubMed  Google Scholar 

  • Kango-Singh M, Singh A, Henry Sun Y (2003) Eyeless collaborates with Hedgehog and Decapentaplegic signaling in Drosophila eye induction. Dev Biol 256:49–60

    Article  PubMed  CAS  Google Scholar 

  • Kawakami K, Ohto H, Takizawa T, Saito T (1996) Identification and expression of six family genes in mouse retina. FEBS Lett 393:259–263

    Article  CAS  PubMed  Google Scholar 

  • Kawakami K, Sato S, Ozaki H, Ikeda K (2000) Six family genes – structure and function as transcription factors and their roles in development. Bioessays 22:616–626

    Article  CAS  PubMed  Google Scholar 

  • Kenyon KL, Ranade SS, Curtiss J, Mlodzik M, Pignoni F (2003) Coordinating proliferation and tissue specification to promote regional identity in the Drosophila head. Dev Cell 5:403–414

    Article  CAS  PubMed  Google Scholar 

  • Kenyon KL, Li DJ, Clouser C, Tran S, Pignoni F (2005) Fly SIX-type homeodomain proteins Sine oculis and Optix partner with different cofactors during eye development. Dev Dyn 234:497–504

    Article  CAS  PubMed  Google Scholar 

  • Kingsley DM (1994) The TGF-beta superfamily: new members, new receptors, and new genetic tests of function in different organisms. Genes Dev 8:133–146

    Article  CAS  PubMed  Google Scholar 

  • Kirby RJ, Hamilton GM, Finnegan DJ, Johnson KJ, Jarman AP (2001) Drosophila homolog of the myotonic dystrophy-associated gene, SIX5, is required for muscle and gonad development. Curr Biol 11:1044–1049

    Article  CAS  PubMed  Google Scholar 

  • Kortenjann M, Nehls M, Smith AJ, Carsetti R, Schuler J, Kohler G, Boehm T (2001) Abnormal bone marrow stroma in mice deficient for nemo-like kinase, Nlk. Eur J Immunol 31:3580–3587

    Article  CAS  PubMed  Google Scholar 

  • Kozmik Z (2005) Pax genes in eye development and evolution. Curr Opin Genet Dev 15:430–438

    Article  CAS  PubMed  Google Scholar 

  • Krapp HG (2009) Ocelli. Curr Biol 19:R435–R437

    Article  CAS  PubMed  Google Scholar 

  • Kronhamn J, Frei E, Daube M, Jiao R, Shi Y, Noll M, Rasmuson-Lestander A (2002) Headless flies produced by mutations in the paralogous Pax6 genes eyeless and twin of eyeless. Development 129:1015–1026

    CAS  PubMed  Google Scholar 

  • Kumar JP (2001) Signalling pathways in Drosophila and vertebrate retinal development. Nat Rev Genet 2:846–857

    Article  CAS  PubMed  Google Scholar 

  • Kumar JP (2009a) The molecular circuitry governing retinal determination. Biochim Biophys Acta 1789:306–314

    Article  CAS  PubMed  Google Scholar 

  • Kumar JP (2009b) The sine oculis homeobox (SIX) family of transcription factors as regulators of development and disease. Cell Mol Life Sci 66:565–583

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kumar JP (2010) Retinal determination the beginning of eye development. Curr Top Dev Biol 93:1–28

    Article  PubMed  PubMed Central  Google Scholar 

  • Kumar JP (2011) My what big eyes you have: how the Drosophila retina grows. Dev Neurobiol 71:1133–1152

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kumar JP, Moses K (2000) Cell fate specification in the Drosophila retina. Results Probl Cell Differ 31:93–114

    Article  CAS  PubMed  Google Scholar 

  • Kumar JP, Moses K (2001a) EGF receptor and notch signaling act upstream of Eyeless/Pax6 to control eye specification. Cell 104:687–697

    Article  CAS  PubMed  Google Scholar 

  • Kumar JP, Moses K (2001b) The EGF receptor and notch signaling pathways control the initiation of the morphogenetic furrow during Drosophila eye development. Development 128:2689–2697

    CAS  PubMed  Google Scholar 

  • Kurada P, White K (1998) Ras promotes cell survival in Drosophila by downregulating hid expression. Cell 95:319–329

    Article  CAS  PubMed  Google Scholar 

  • Kurata S, Go MJ, Artavanis-Tsakonas S, Gehring WJ (2000) Notch signaling and the determination of appendage identity. Proc Natl Acad Sci USA 97:2117–2122

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kurusu M, Nagao T, Walldorf U, Flister S, Gehring WJ, Furukubo-Tokunaga K (2000) Genetic control of development of the mushroom bodies, the associative learning centers in the Drosophila brain, by the eyeless, twin of eyeless, and Dachshund genes. Proc Natl Acad Sci USA 97:2140–2144

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Laugier E, Yang Z, Fasano L, Kerridge S, Vola C (2005) A critical role of teashirt for patterning the ventral epidermis is masked by ectopic expression of tiptop, a paralog of teashirt in Drosophila. Dev Biol 283:446–458

    Article  CAS  PubMed  Google Scholar 

  • Lebovitz RM, Ready DF (1986) Ommatidial development in Drosophila eye disc fragments. Dev Biol 117:663–671

    Article  CAS  PubMed  Google Scholar 

  • Lee JD, Treisman JE (2001) The role of Wingless signaling in establishing the anteroposterior and dorsoventral axes of the eye disc. Development 128:1519–1529

    CAS  PubMed  Google Scholar 

  • Lee JJ, Ekker SC, von Kessler DP, Porter JA, Sun BI, Beachy PA (1994) Autoproteolysis in hedgehog protein biogenesis. Science 266:1528–1537

    Article  CAS  PubMed  Google Scholar 

  • Legent K, Treisman JE (2008) Wingless signaling in Drosophila eye development. Methods Mol Biol 469:141–161

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lehmann M (2004) Anything else but GAGA: a nonhistone protein complex reshapes chromatin structure. Trends Genet 20:15–22

    Article  CAS  PubMed  Google Scholar 

  • Leppert GS, Yang JM, Sundin OH (1999) Sequence and location of SIX3, a homeobox gene expressed in the human eye. Ophthalmic Genet 20:7–21

    Article  CAS  PubMed  Google Scholar 

  • Li Y, Jiang Y, Chen Y, Karandikar U, Hoffman K, Chattopadhyay A, Mardon G, Chen R (2013) Optix functions as a link between the retinal determination network and the dpp pathway to control morphogenetic furrow progression in Drosophila. Dev Biol 381:50–61

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Loosli F, Koster RW, Carl M, Krone A, Wittbrodt J (1998) Six3, a medaka homologue of the Drosophila homeobox gene sine oculis is expressed in the anterior embryonic shield and the developing eye. Mech Dev 74:159–164

    Article  CAS  PubMed  Google Scholar 

  • Lopes CS, Casares F (2010) hth maintains the pool of eye progenitors and its downregulation by Dpp and Hh couples retinal fate acquisition with cell cycle exit. Dev Biol 339:78–88

    Article  CAS  PubMed  Google Scholar 

  • Ma C, Zhou Y, Beachy PA, Moses K (1993) The segment polarity gene hedgehog is required for progression of the morphogenetic furrow in the developing Drosophila eye. Cell 75:927–938

    Article  CAS  PubMed  Google Scholar 

  • Mandaravally Madhavan M, Schneiderman HA (1977) Histological analysis of the dynamics of growth of imaginal discs and histoblast nests during the larval development of Drosophila melanogaster. Wilhelm Roux’s Arch Dev Biol 183:269–305

    Article  CAS  Google Scholar 

  • Mann RS, Morata G (2000) The developmental and molecular biology of genes that subdivide the body of Drosophila. Annu Rev Cell Dev Biol 16:243–271

    Article  CAS  PubMed  Google Scholar 

  • Mardon G, Solomon NM, Rubin GM (1994) Dachshund encodes a nuclear protein required for normal eye and leg development in Drosophila. Development 120:3473–3486

    CAS  PubMed  Google Scholar 

  • Martini SR, Roman G, Meuser S, Mardon G, Davis RL (2000) The retinal determination gene, dachshund, is required for mushroom body cell differentiation. Development 127:2663–2672

    CAS  PubMed  Google Scholar 

  • Mathies LD, Kerridge S, Scott MP (1994) Role of the teashirt gene in Drosophila midgut morphogenesis: secreted proteins mediate the action of homeotic genes. Development 120:2799–2809

    CAS  PubMed  Google Scholar 

  • McClure KD, Schubiger G (2005) Developmental analysis and squamous morphogenesis of the peripodial epithelium in Drosophila imaginal discs. Development 132:5033–5042

    Article  CAS  PubMed  Google Scholar 

  • Meneghini MD, Ishitani T, Carter JC, Hisamoto N, Ninomiya-Tsuji J, Thorpe CJ, Hamill DR, Matsumoto K, Bowerman B (1999) MAP kinase and Wnt pathways converge to downregulate an HMG-domain repressor in Caenorhabditis elegans. Nature 399:793–797

    Article  CAS  PubMed  Google Scholar 

  • Milani R (1941) Two new eye-shape mutant alleles in Drosophila melanogaster. Drosophila Information Service 14:52

    Google Scholar 

  • Mishra AK, Bernardo-Garcia FJ, Fritsch C, Humberg TH, Egger B, Sprecher SG (2018) Patterning mechanisms diversify neuroepithelial domains in the Drosophila optic placode. PLoS Genet 14:e1007353

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Morillo SA, Braid LR, Verheyen EM, Rebay I (2012) Nemo phosphorylates Eyes absent and enhances output from the Eya-Sine oculis transcriptional complex during Drosophila retinal determination. Dev Biol 365:267–276

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Moskow JJ, Bullrich F, Huebner K, Daar IO, Buchberg AM (1995) Meis1, a PBX1-related homeobox gene involved in myeloid leukemia in BXH-2 mice. Mol Cell Biol 15:5434–5443

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Neumann CJ, Nuesslein-Volhard C (2000) Patterning of the zebrafish retina by a wave of sonic hedgehog activity. Science 289:2137–2139

    Article  CAS  PubMed  Google Scholar 

  • Newfeld SJ, Chartoff EH, Graff JM, Melton DA, Gelbart WM (1996) Mothers against dpp encodes a conserved cytoplasmic protein required in DPP/TGF-beta responsive cells. Development 122:2099–2108

    CAS  PubMed  Google Scholar 

  • Niimi T, Seimiya M, Kloter U, Flister S, Gehring WJ (1999) Direct regulatory interaction of the eyeless protein with an eye-specific enhancer in the sine oculis gene during eye induction in Drosophila. Development 126:2253–2260

    CAS  PubMed  Google Scholar 

  • Noro B, Culi J, McKay DJ, Zhang W, Mann RS (2006) Distinct functions of homeodomain-containing and homeodomain-less isoforms encoded by homothorax. Genes Dev 20:1636–1650

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Noveen A, Daniel A, Hartenstein V (2000) Early development of the Drosophila mushroom body: the roles of eyeless and dachshund. Development 127:3475–3488

    CAS  PubMed  Google Scholar 

  • O’Tousa JE, Baehr W, Martin RL, Hirsh J, Pak WL, Applebury ML (1985) The Drosophila ninaE gene encodes an opsin. Cell 40:839–850

    Article  PubMed  Google Scholar 

  • Okabe Y, Sano T, Nagata S (2009) Regulation of the innate immune response by threonine-phosphatase of Eyes absent. Nature 460:520–524

    Article  CAS  PubMed  Google Scholar 

  • Oliver G, Mailhos A, Wehr R, Copeland NG, Jenkins NA, Gruss P (1995) Six3, a murine homologue of the sine oculis gene, demarcates the most anterior border of the developing neural plate and is expressed during eye development. Development 121:4045–4055

    CAS  PubMed  Google Scholar 

  • Ostrin EJ, Li Y, Hoffman K, Liu J, Wang K, Zhang L, Mardon G, Chen R (2006) Genome-wide identification of direct targets of the Drosophila retinal determination protein Eyeless. Genome Res 16:466–476

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pai CY, Kuo TS, Jaw TJ, Kurant E, Chen CT, Bessarab DA, Salzberg A, Sun YH (1998) The Homothorax homeoprotein activates the nuclear localization of another homeoprotein, extradenticle, and suppresses eye development in Drosophila. Genes Dev 12:435–446

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pan D, Rubin GM (1998) Targeted expression of teashirt induces ectopic eyes in Drosophila. Proc Natl Acad Sci USA 95:15508–15512

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Papayannopoulos V, Tomlinson A, Panin VM, Rauskolb C, Irvine KD (1998) Dorsal-ventral signaling in the Drosophila eye. Science 281:2031–2034

    Article  CAS  PubMed  Google Scholar 

  • Pappu K, Mardon G (2002) Retinal specification and determination in Drosophila. Results Probl Cell Differ 37:5–20

    Article  CAS  PubMed  Google Scholar 

  • Pappu KS, Mardon G (2004) Genetic control of retinal specification and determination in Drosophila. Int J Dev Biol 48:913–924

    Article  PubMed  Google Scholar 

  • Pappu KS, Ostrin EJ, Middlebrooks BW, Sili BT, Chen R, Atkins MR, Gibbs R, Mardon G (2005) Dual regulation and redundant function of two eye-specific enhancers of the Drosophila retinal determination gene dachshund. Development 132:2895–2905

    Article  CAS  PubMed  Google Scholar 

  • Pauli T, Seimiya M, Blanco J, Gehring WJ (2005) Identification of functional sine oculis motifs in the autoregulatory element of its own gene, in the eyeless enhancer and in the signalling gene hedgehog. Development 132:2771–2782

    Article  CAS  PubMed  Google Scholar 

  • Peng HW, Slattery M, Mann RS (2009) Transcription factor choice in the Hippo signaling pathway: homothorax and yorkie regulation of the microRNA bantam in the progenitor domain of the Drosophila eye imaginal disc. Genes Dev 23:2307–2319

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pfeiffer BD, Jenett A, Hammonds AS, Ngo TT, Misra S, Murphy C, Scully A, Carlson JW, Wan KH, Laverty TR, Mungall C, Svirskas R, Kadonaga JT, Doe CQ, Eisen MB, Celniker SE, Rubin GM (2008) Tools for neuroanatomy and neurogenetics in Drosophila. Proc Natl Acad Sci USA 105:9715–9720

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pichaud F, Casares F (2000) Homothorax and iroquois-C genes are required for the establishment of territories within the developing eye disc. Mech Dev 96:15–25

    Article  CAS  PubMed  Google Scholar 

  • Pignoni F, Zipursky SL (1997) Induction of Drosophila eye development by decapentaplegic. Development 124:271–278

    CAS  PubMed  Google Scholar 

  • Pignoni F, Hu B, Zavitz KH, Xiao J, Garrity PA, Zipursky SL (1997) The eye-specification proteins So and Eya form a complex and regulate multiple steps in Drosophila eye development. Cell 91:881–891

    Article  CAS  PubMed  Google Scholar 

  • Plaza S, Dozier C, Saule S (1993) Quail Pax-6 (Pax-QNR) encodes a transcription factor able to bind and trans-activate its own promoter. Cell Growth Differ 4:1041–1050

    CAS  PubMed  Google Scholar 

  • Pollock JA, Benzer S (1988) Transcript localization of four opsin genes in the three visual organs of Drosophila; RH2 is ocellus specific. Nature 333:779–782

    Article  CAS  PubMed  Google Scholar 

  • Porter JA, von Kessler DP, Ekker SC, Young KE, Lee JJ, Moses K, Beachy PA (1995) The product of hedgehog autoproteolytic cleavage active in local and long-range signalling. Nature 374:363–366

    Article  CAS  PubMed  Google Scholar 

  • Punzo C, Kurata S, Gehring WJ (2001) The eyeless homeodomain is dispensable for eye development in Drosophila. Genes Dev 15:1716–1723

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Punzo C, Seimiya M, Flister S, Gehring WJ, Plaza S (2002) Differential interactions of eyeless and twin of eyeless with the sine oculis enhancer. Development 129:625–634

    CAS  PubMed  Google Scholar 

  • Punzo C, Plaza S, Seimiya M, Schnupf P, Kurata S, Jaeger J, Gehring WJ (2004) Functional divergence between eyeless and twin of eyeless in Drosophila melanogaster. Development 131:3943–3953

    Article  CAS  PubMed  Google Scholar 

  • Quiring R, Walldorf U, Kloter U, Gehring WJ (1994) Homology of the eyeless gene of Drosophila to the Small eye gene in mice and Aniridia in humans. Science 265:785–789

    Article  CAS  PubMed  Google Scholar 

  • Rayapureddi JP, Kattamuri C, Steinmetz BD, Frankfort BJ, Ostrin EJ, Mardon G, Hegde RS (2003) Eyes absent represents a class of protein tyrosine phosphatases. Nature 426:295–298

    Article  CAS  PubMed  Google Scholar 

  • Ready DF, Hanson TE, Benzer S (1976) Development of the Drosophila retina, a neurocrystalline lattice. Dev Biol 53:217–240

    Article  CAS  PubMed  Google Scholar 

  • Rieckhof GE, Casares F, Ryoo HD, Abu-Shaar M, Mann RS (1997) Nuclear translocation of extradenticle requires homothorax, which encodes an extradenticle-related homeodomain protein. Cell 91:171–183

    Article  CAS  PubMed  Google Scholar 

  • Rodrigues AB, Moses K (2004) Growth and specification: fly Pax6 homologs eyegone and eyeless have distinct functions. Bioessays 26:600–603

    Article  CAS  PubMed  Google Scholar 

  • Ronchi E, Treisman J, Dostatni N, Struhl G, Desplan C (1993) Down-regulation of the Drosophila morphogen bicoid by the torso receptor-mediated signal transduction cascade. Cell 74:347–355

    Article  CAS  PubMed  Google Scholar 

  • Rothe M, Wimmer EA, Pankratz MJ, Gonzalez-Gaitan M, Jackle H (1994) Identical transacting factor requirement for knirps and knirps-related gene expression in the anterior but not in the posterior region of the Drosophila embryo. Mech Dev 46:169–181

    Article  CAS  PubMed  Google Scholar 

  • Royet J, Finkelstein R (1995) Pattern formation in Drosophila head development: the role of the orthodenticle homeobox gene. Development 121:3561–3572

    CAS  PubMed  Google Scholar 

  • Royet J, Finkelstein R (1996) Hedgehog, wingless and orthodenticle specify adult head development in Drosophila. Development 122:1849–1858

    CAS  PubMed  Google Scholar 

  • Royet J, Finkelstein R (1997) Establishing primordia in the Drosophila eye-antennal imaginal disc: the roles of decapentaplegic, wingless and hedgehog. Development 124:4793–4800

    CAS  PubMed  Google Scholar 

  • Ryoo HD, Marty T, Casares F, Affolter M, Mann RS (1999) Regulation of Hox target genes by a DNA bound Homothorax/Hox/Extradenticle complex. Development 126:5137–5148

    CAS  PubMed  Google Scholar 

  • Salzer CL, Kumar JP (2009) Position dependent responses to discontinuities in the retinal determination network. Dev Biol 326:121–130

    Article  CAS  PubMed  Google Scholar 

  • Salzer CL, Kumar JP (2010) Identification of retinal transformation hot spots in developing Drosophila epithelia. PLoS One 5:e8510

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Sarkar A, Gogia N, Farley K, Payton L, Singh A (2018) Characterization of a morphogenetic furrow specific Gal4 driver in the developing Drosophila eye. PLoS One 13:e0196365

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Sawamoto K, Okano H (1996) Cell-cell interactions during neural development: multiple types of lateral inhibitions involved in Drosophila eye development. Neurosci Res 26:205–214

    Article  CAS  PubMed  Google Scholar 

  • Seimiya M, Gehring WJ (2000) The Drosophila homeobox gene optix is capable of inducing ectopic eyes by an eyeless-independent mechanism. Development 127:1879–1886

    CAS  PubMed  Google Scholar 

  • Seo HC, Drivenes, Ellingsen S, Fjose A (1998) Expression of two zebrafish homologues of the murine Six3 gene demarcates the initial eye primordia. Mech Dev 73:45–57

    Article  CAS  PubMed  Google Scholar 

  • Seo HC, Curtiss J, Mlodzik M, Fjose A (1999) Six class homeobox genes in Drosophila belong to three distinct families and are involved in head development. Mech Dev 83:127–139

    Article  CAS  PubMed  Google Scholar 

  • Serikaku MA, O’Tousa JE (1994) Sine oculis is a homeobox gene required for Drosophila visual system development. Genetics 138:1137–1150

    CAS  PubMed  PubMed Central  Google Scholar 

  • Shen W, Mardon G (1997) Ectopic eye development in Drosophila induced by directed dachshund expression. Development 124:45–52

    CAS  PubMed  Google Scholar 

  • Sheng G, Thouvenot E, Schmucker D, Wilson DS, Desplan C (1997) Direct regulation of rhodopsin 1 by Pax-6/eyeless in Drosophila: evidence for a conserved function in photoreceptors. Genes Dev 11:1122–1131

    Article  CAS  PubMed  Google Scholar 

  • Shimamura M, Kyotani A, Azuma Y, Yoshida H, Binh Nguyen T, Mizuta I, Yoshida T, Mizuno T, Nakagawa M, Tokuda T, Yamaguchi M (2014) Genetic link between Cabeza, a Drosophila homologue of Fused in Sarcoma (FUS), and the EGFR signaling pathway. Exp Cell Res 326:36–45

    Article  CAS  PubMed  Google Scholar 

  • Siegmund T, Lehmann M (2002) The Drosophila Pipsqueak protein defines a new family of helix-turn-helix DNA-binding proteins. Dev Genes Evol 212:152–157

    Article  CAS  PubMed  Google Scholar 

  • Silver SJ, Rebay I (2005) Signaling circuitries in development: insights from the retinal determination gene network. Development 132:3–13

    Article  CAS  PubMed  Google Scholar 

  • Silver SJ, Davies EL, Doyon L, Rebay I (2003) Functional dissection of eyes absent reveals new modes of regulation within the retinal determination gene network. Mol Cell Biol 23:5989–5999

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Simcox AA, Sang JH (1983) When does determination occur in Drosophila embryos? Dev Biol 97:212–221

    Article  CAS  PubMed  Google Scholar 

  • Simeone A, Acampora D, Mallamaci A, Stornaiuolo A, D'Apice MR, Nigro V, Boncinelli E (1993) A vertebrate gene related to orthodenticle contains a homeodomain of the bicoid class and demarcates anterior neuroectoderm in the gastrulating mouse embryo. EMBO J 12:2735–2747

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Singh A, Kango-Singh M, Sun YH (2002) Eye suppression, a novel function of teashirt, requires Wingless signaling. Development 129:4271–4280

    CAS  PubMed  Google Scholar 

  • Singh A, Kango-Singh M, Choi KW, Sun YH (2004) Dorso-ventral asymmetric functions of teashirt in Drosophila eye development depend on spatial cues provided by early DV patterning genes. Mech Dev 121:365–370

    Article  CAS  PubMed  Google Scholar 

  • Soanes KH, MacKay JO, Core N, Heslip T, Kerridge S, Bell JB (2001) Identification of a regulatory allele of teashirt (tsh) in Drosophila melanogaster that affects wing hinge development. An adult-specific tsh enhancer in Drosophila. Mech Dev 105:145–151

    Article  CAS  PubMed  Google Scholar 

  • Stevens KE, Mann RS (2007) A balance between two nuclear localization sequences and a nuclear export sequence governs extradenticle subcellular localization. Genetics 175:1625–1636

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Suzanne M (2004) Expression analysis of the Drosophila pipsqueak family members fernandez/distal antenna and hernandez/distal antenna related. Dev Dyn 230:361–365

    Article  CAS  PubMed  Google Scholar 

  • Suzanne M, Estella C, Calleja M, Sanchez-Herrero E (2003) The hernandez and fernandez genes of Drosophila specify eye and antenna. Dev Biol 260:465–483

    Article  CAS  PubMed  Google Scholar 

  • Suzuki T, Saigo K (2000) Transcriptional regulation of atonal required for Drosophila larval eye development by concerted action of eyes absent, sine oculis and hedgehog signaling independent of fused kinase and cubitus interruptus. Development 127:1531–1540

    CAS  PubMed  Google Scholar 

  • Sved J (1986) Eyes absent (eya). Drosophila Inform Serv 63:15–26

    Google Scholar 

  • Tadjuidje E, Hegde RS (2013) The Eyes Absent proteins in development and disease. Cell Mol Life Sci 70:1897–1913

    Article  CAS  PubMed  Google Scholar 

  • Tanaka R, Miyata S, Yamaguchi M, Yoshida H (2019) Role of the smallish gene during Drosophila eye development. Gene 684:10–19

    Article  CAS  PubMed  Google Scholar 

  • Tare M, Puli OR, Moran MT, Kango-Singh M, Singh A (2013) Domain specific genetic mosaic system in the Drosophila eye. Genesis 51:68–74

    Article  CAS  PubMed  Google Scholar 

  • Tavsanli BC, Ostrin EJ, Burgess HK, Middlebrooks BW, Pham TA, Mardon G (2004) Structure-function analysis of the Drosophila retinal determination protein Dachshund. Dev Biol 272:231–247

    Article  CAS  PubMed  Google Scholar 

  • Thorpe CJ, Moon RT (2004) Nemo-like kinase is an essential co-activator of Wnt signaling during early zebrafish development. Development 131:2899–2909

    Article  CAS  PubMed  Google Scholar 

  • Tomlinson A, Ready DF (1987a) Cell fate in the Drosophila ommatidium. Dev Biol 123:264–275

    Article  CAS  PubMed  Google Scholar 

  • Tomlinson A, Ready DF (1987b) Neuronal differentiation in Drosophila ommatidium. Dev Biol 120:366–376

    Article  CAS  PubMed  Google Scholar 

  • Ton CC, Hirvonen H, Miwa H, Weil MM, Monaghan P, Jordan T, van Heyningen V, Hastie ND, Meijers-Heijboer H, Drechsler M et al (1991) Positional cloning and characterization of a paired box- and homeobox-containing gene from the aniridia region. Cell 67:1059–1074

    Article  CAS  PubMed  Google Scholar 

  • Tootle TL, Silver SJ, Davies EL, Newman V, Latek RR, Mills IA, Selengut JD, Parlikar BE, Rebay I (2003) The transcription factor Eyes absent is a protein tyrosine phosphatase. Nature 426:299–302

    Article  CAS  PubMed  Google Scholar 

  • Toy J, Yang JM, Leppert GS, Sundin OH (1998) The optx2 homeobox gene is expressed in early precursors of the eye and activates retina-specific genes. Proc Natl Acad Sci USA 95:10643–10648

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Treisman JE, Rubin GM (1995) Wingless inhibits morphogenetic furrow movement in the Drosophila eye disc. Development 121:3519–3527

    CAS  PubMed  Google Scholar 

  • Treisman J, Harris E, Desplan C (1991) The paired box encodes a second DNA-binding domain in the paired homeo domain protein. Genes Dev 5:594–604

    Article  CAS  PubMed  Google Scholar 

  • Verbakel SK, van Huet RAC, Boon CJF, den Hollander AI, Collin RWJ, Klaver CCW, Hoyng CB, Roepman R, Klevering BJ (2018) Non-syndromic retinitis pigmentosa. Prog Retin Eye Res 66:157–186

    Article  PubMed  Google Scholar 

  • Voas MG, Rebay I (2004) Signal integration during development: insights from the Drosophila eye. Dev Dyn 229:162–175

    Article  CAS  PubMed  Google Scholar 

  • Walther C, Gruss P (1991) Pax-6, a murine paired box gene, is expressed in the developing CNS. Development 113:1435–1449

    CAS  PubMed  Google Scholar 

  • Wang CW, Sun YH (2012) Segregation of eye and antenna fates maintained by mutual antagonism in Drosophila. Development 139:3413–3421

    Article  CAS  PubMed  Google Scholar 

  • Wangler MF, Yamamoto S, Chao HT, Posey JE, Westerfield M, Postlethwait J, Members of the Undiagnosed Diseases, N, Hieter P, Boycott KM, Campeau PM, Bellen HJ (2017) Model organisms facilitate rare disease diagnosis and therapeutic research. Genetics 207:9–27

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Weasner BP, Kumar JP (2009) The non-conserved C-terminal segments of Sine Oculis Homeobox (SIX) proteins confer functional specificity. Genesis 47:514–523

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Weasner B, Salzer C, Kumar JP (2007) Sine oculis, a member of the SIX family of transcription factors, directs eye formation. Dev Biol 303:756–771

    Article  CAS  PubMed  Google Scholar 

  • Wiersdorff V, Lecuit T, Cohen SM, Mlodzik M (1996) Mad acts downstream of Dpp receptors, revealing a differential requirement for dpp signaling in initiation and propagation of morphogenesis in the Drosophila eye. Development 122:2153–2162

    CAS  PubMed  Google Scholar 

  • Wieschaus E, Gehring W (1976) Clonal analysis of primordial disc cells in the early embryo of Drosophila melanogaster. Dev Biol 50:249–263

    Article  CAS  PubMed  Google Scholar 

  • Wolff T, Ready DF (1991) The beginning of pattern formation in the Drosophila compound eye: the morphogenetic furrow and the second mitotic wave. Development 113:841–850

    CAS  PubMed  Google Scholar 

  • Wolff T, Ready DF (1993) Pattern formation in the Drosophila retina. In: The development of Drosophila melanogaster, vol 2. Cold Spring Harbor Laboratory Press, New York, pp 1277–1325

    Google Scholar 

  • Wu J, Cohen SM (2000) Proximal distal axis formation in the Drosophila leg: distinct functions of teashirt and homothorax in the proximal leg. Mech Dev 94:47–56

    Article  CAS  PubMed  Google Scholar 

  • Wu J, Cohen SM (2002) Repression of Teashirt marks the initiation of wing development. Development 129:2411–2418

    CAS  PubMed  Google Scholar 

  • Yamaguchi S, Desplan C, Heisenberg M (2010) Contribution of photoreceptor subtypes to spectral wavelength preference in Drosophila. Proc Natl Acad Sci USA 107:5634–5639

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yamamoto S, Jaiswal M, Charng WL, Gambin T, Karaca E, Mirzaa G, Wiszniewski W, Sandoval H, Haelterman NA, Xiong B, Zhang K, Bayat V, David G, Li T, Chen K, Gala U, Harel T, Pehlivan D, Penney S, Vissers L, de Ligt J, Jhangiani SN, Xie Y, Tsang SH, Parman Y, Sivaci M, Battaloglu E, Muzny D, Wan YW, Liu Z, Lin-Moore AT, Clark RD, Curry CJ, Link N, Schulze KL, Boerwinkle E, Dobyns WB, Allikmets R, Gibbs RA, Chen R, Lupski JR, Wangler MF, Bellen HJ (2014) A drosophila genetic resource of mutants to study mechanisms underlying human genetic diseases. Cell 159:200–214

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yao JG, Sun YH (2005) Eyg and Ey Pax proteins act by distinct transcriptional mechanisms in Drosophila development. EMBO J 24:2602–2612

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yao JG, Weasner BM, Wang LH, Jang CC, Weasner B, Tang CY, Salzer CL, Chen CH, Hay B, Sun YH, Kumar JP (2008) Differential requirements for the Pax6(5a) genes eyegone and twin of eyegone during eye development in Drosophila. Dev Biol 315:535–551

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yeung K, Wang F, Li Y, Wang K, Mardon G, Chen R (2018) Integrative genomic analysis reveals novel regulatory mechanisms of eyeless during Drosophila eye development. Nucleic Acids Res 46:11743–11758

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yoon CS, Hirosawa K, Suzuki E (1996) Studies on the structure of ocellar photoreceptor cells of Drosophila melanogaster with special reference to subrhabdomeric cisternae. Cell Tissue Res 284:77–85

    Article  CAS  PubMed  Google Scholar 

  • Younossi-Hartenstein A, Tepass U, Hartenstein V (1993) Embryonic origin of the imaginal discs of the head of Drosophila melanogaster. Roux’s Arch Dev Biol 203:60–73

    Article  Google Scholar 

  • Yu SY, Yoo SJ, Yang L, Zapata C, Srinivasan A, Hay BA, Baker NE (2002) A pathway of signals regulating effector and initiator caspases in the developing Drosophila eye. Development 129:3269–3278

    CAS  PubMed  Google Scholar 

  • Zecca M, Basler K, Struhl G (1995) Sequential organizing activities of engrailed, hedgehog and decapentaplegic in the Drosophila wing. Development 121:2265–2278

    CAS  PubMed  Google Scholar 

  • Zimmerman JE, Bui QT, Liu H, Bonini NM (2000) Molecular genetic analysis of Drosophila eyes absent mutants reveals an eye enhancer element. Genetics 154:237–246

    CAS  PubMed  PubMed Central  Google Scholar 

  • Zuber ME, Perron M, Philpott A, Bang A, Harris WA (1999) Giant eyes in Xenopus laevis by overexpression of XOptx2. Cell 98:341–352

    Article  CAS  PubMed  Google Scholar 

  • Zuker CS, Cowman AF, Rubin GM (1985) Isolation and structure of a rhodopsin gene from D. melanogaster. Cell 40:851–858

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Simon G. Sprecher .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Mishra, A.K., Sprecher, S.G. (2020). Early Eye Development: Specification and Determination. In: Singh, A., Kango-Singh, M. (eds) Molecular Genetics of Axial Patterning, Growth and Disease in Drosophila Eye. Springer, Cham. https://doi.org/10.1007/978-3-030-42246-2_1

Download citation

Publish with us

Policies and ethics