Skip to main content

Vertebrate Eye Gene Regulatory Networks

  • Chapter
  • First Online:
Organogenetic Gene Networks

Abstract

The development of the eye in vertebrates entails the precise coordination of the genetic programs that control morphogenetic movements and inductive signals. The basic blueprint of the vertebrate eye is established in the developmental window comprised between the specification of the eye field at early gastrulation and the onset of neuronal differentiation (Martinez-Morales and Wittbrodt in Curr Opin Genet Dev 19(5):511–517, 2009; Fuhrmann in Curr Top Dev Biol 93:61–84, 2010; Sinn and Wittbrodt in Mech Dev 130(6–8):347–358, 2013). During this period, the precursor cells from the eye primordium get specified, and then differentiate to form three major tissue domains: the neural retina, the retinal-pigmented epithelium (RPE), and the optic stalk domains. A process that culminates with the formation of the optic cup, a highly conserved embryonic structure that represents a common arrangement for the embryonic eye in vertebrates (Tena et al. in Genome Res, 2014). This chapter will focus in the architecture of the Gene Regulatory Networks (GRNs) during early organogenesis. The structure of the GRNs involved in the initial specification and differentiation of the major non-neural component of the eye, the lens, will not be examined here. The reader is referred to the following reviews for a detailed discussion on this subject (Cvekl and Duncan in Prog Retin Eye Res 26(6): 555–597, 2007; Cvekl and Ashery-Padan in Development 141(23):4432–4447, 2014).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    For the sake of simplicity, the development of the optic disc and the ciliary body (i.e. the specialized structures differentiating at the interface between the main retinal domains) will not be discussed in this chapter.

References

  • Adler, R., & Canto-Soler, M. V. (2007). Molecular mechanisms of optic vesicle development: Complexities, ambiguities and controversies. Development Biology, 305(1), 1–13.

    Article  CAS  Google Scholar 

  • Arnheiter, H. (2010). The discovery of the microphthalmia locus and its gene, Mitf. Pigment Cell Melanoma Research, 23(6), 729–735.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Barbieri, A. M., Broccoli, V., Bovolenta, P., Alfano, G., Marchitiello, A., Mocchetti, C., et al. (2002). Vax2 inactivation in mouse determines alteration of the eye dorsal-ventral axis, misrouting of the optic fibres and eye coloboma. Development, 129(3), 805–813.

    CAS  PubMed  Google Scholar 

  • Barbieri, A. M., Lupo, G., Bulfone, A., Andreazzoli, M., Mariani, M., Fougerousse, F., et al. (1999). A homeobox gene, vax2, controls the patterning of the eye dorsoventral axis. Proceedings of the National Academy of Sciences of the United States of America, 96(19), 10729–10734.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Baumer, N., Marquardt, T., Stoykova, A., Spieler, D., Treichel, D., Ashery-Padan, R., et al. (2003). Retinal pigmented epithelium determination requires the redundant activities of Pax2 and Pax6. Development, 130(13), 2903–2915.

    Article  PubMed  CAS  Google Scholar 

  • Behesti, H., Papaioannou, V. E., & Sowden, J. C. (2009). Loss of Tbx2 delays optic vesicle invagination leading to small optic cups. Developmental Biology, 333(2), 360–372.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bertuzzi, S., Hindges, R., Mui, S. H., O’Leary, D. D., & Lemke, G. (1999). The homeodomain protein vax1 is required for axon guidance and major tract formation in the developing forebrain. Genes & Development, 13(23), 3092–3105.

    Article  CAS  Google Scholar 

  • Bharti, K., Gasper, M., Ou, J., Brucato, M., Clore-Gronenborn, K., Pickel, J., et al. (2012). A regulatory loop involving PAX6, MITF, and WNT signaling controls retinal pigment epithelium development. PLoS Genetics, 8(7), e1002757.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bharti, K., Liu, W., Csermely, T., Bertuzzi, S., & Arnheiter, H. (2008). Alternative promoter use in eye development: The complex role and regulation of the transcription factor MITF. Development, 135(6), 1169–1178.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bielen, H., & Houart, C. (2012). BMP signaling protects telencephalic fate by repressing eye identity and its Cxcr4-dependent morphogenesis. Developmental Cell, 23(4), 812–822.

    Article  CAS  PubMed  Google Scholar 

  • Bogdanovic, O., Delfino-Machin, M., Nicolas-Perez, M., Gavilan, M. P., Gago-Rodrigues, I., Fernandez-Minan, A., et al. (2012). Numb/Numbl-Opo antagonism controls retinal epithelium morphogenesis by regulating integrin endocytosis. Developmental Cell, 23(4), 782–795.

    Article  CAS  PubMed  Google Scholar 

  • Bovolenta, P., Mallamaci, A., Briata, P., Corte, G., & Boncinelli, E. (1997). Implication of Otx2 in pigmented epithelium determination and neural retina differentiation. Journal of Neuroscience, 17, 4243–4252.

    CAS  PubMed  Google Scholar 

  • Brown, K. E., Keller, P. J., Ramialison, M., Rembold, M., Stelzer, E. H., Loosli, F., et al. (2010). Nlcam modulates midline convergence during anterior neural plate morphogenesis. Developmental Biology, 339(1), 14–25.

    Article  CAS  PubMed  Google Scholar 

  • Bumsted, K. M., & Barnstable, C. J. (2000). Dorsal retinal pigment epithelium differentiates as neural retina in the microphthalmia (mi/mi) mouse. Investigative Ophthalmology & Visual Science, 41(3), 903–908.

    CAS  Google Scholar 

  • Cai, Z., Feng, G. S., & Zhang, X. (2010). Temporal requirement of the protein tyrosine phosphatase Shp2 in establishing the neuronal fate in early retinal development. Journal of Neuroscience, 30(11), 4110–4119.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cai, Z., Tao, C., Li, H., Ladher, R., Gotoh, N., Feng, G. S., et al. (2013). Deficient FGF signaling causes optic nerve dysgenesis and ocular coloboma. Development, 140(13), 2711–2723.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cardozo, M. J., Sanchez-Arrones, L., Sandonis, A., Sanchez-Camacho, C., Gestri, G., Wilson, S. W., et al. (2014). Cdon acts as a Hedgehog decoy receptor during proximal-distal patterning of the optic vesicle. Nature Communications, 5, 4272.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Carl, M., Loosli, F., & Wittbrodt, J. (2002). Six3 inactivation reveals its essential role for the formation and patterning of the vertebrate eye. Development, 129(17), 4057–4063.

    CAS  PubMed  Google Scholar 

  • Cavodeassi, F., Ivanovitch, K., & Wilson, S. W. (2013). Eph/Ephrin signalling maintains eye field segregation from adjacent neural plate territories during forebrain morphogenesis. Development, 140(20), 4193–4202.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chiang, C., Litingtung, Y., Lee, E., Young, K. E., Corden, J. L., Westphal, H., et al. (1996). Cyclopia and defective axial patterning in mice lacking Sonic Hedgehog gene function. Nature, 383, 407–413.

    Article  CAS  PubMed  Google Scholar 

  • Chow, R. L., Altmann, C. R., Lang, R. A., & Hemmati-Brivanlou, A. (1999). Pax6 induces ectopic eyes in a vertebrate. Development, 126(19), 4213–4222.

    CAS  PubMed  Google Scholar 

  • Coulombre, J. L., & Coulombre, A. J. (1965). Regeneration of neural retina from the pigmented epithelium in the chick embryo. Developmental Biology, 12(1), 79–92.

    Article  CAS  PubMed  Google Scholar 

  • Cvekl, A., & Ashery-Padan, R. (2014). The cellular and molecular mechanisms of vertebrate lens development. Development, 141(23), 4432–4447.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cvekl, A., & Duncan, M. K. (2007). Genetic and epigenetic mechanisms of gene regulation during lens development. Progress in Retinal and Eye Research, 26(6), 555–597.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Davidson, E. H., & Erwin, D. H. (2006). Gene regulatory networks and the evolution of animal body plans. Science, 311(5762), 796–800.

    Article  CAS  PubMed  Google Scholar 

  • Del Rio-Tsonis, K., & Tsonis, P. A. (2003). Eye regeneration at the molecular age. Developmental Dynamics, 226(2), 211–224.

    Article  PubMed  Google Scholar 

  • Eiraku, M., Takata, N., Ishibashi, H., Kawada, M., Sakakura, E., Okuda, S., et al. (2011). Self-organizing optic-cup morphogenesis in three-dimensional culture. Nature, 472(7341), 51–56.

    Article  CAS  PubMed  Google Scholar 

  • Ekker, S. C., Ungar, A. R., Greenstein, P., von Kessler, D., Porter, J. A., Moon, R. T., et al. (1995). Patterning activities of vertebrate hedgehog proteins in the developing eye and brain. Current Biology, 5, 944–955.

    Google Scholar 

  • ENCODE_Project_Consortium, Bernstein, B. E., Birney, E., Dunham, I., Green, E. D., Gunter, C., & Snyder, M. (2012). An integrated encyclopedia of DNA elements in the human genome. Nature, 489(7414), 57–74.

    Google Scholar 

  • England, S. J., Blanchard, G. B., Mahadevan, L., & Adams, R. J. (2006). A dynamic fate map of the forebrain shows how vertebrate eyes form and explains two causes of cyclopia. Development, 133(23), 4613–4617.

    Article  CAS  PubMed  Google Scholar 

  • Fish, M. B., Nakayama, T., Fisher, M., Hirsch, N., Cox, A., Reeder, R., et al. (2014). Xenopus mutant reveals necessity of rax for specifying the eye field which otherwise forms tissue with telencephalic and diencephalic character. Developmental Biology, 395(2), 317–330.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fuhrmann, S. (2010). Eye morphogenesis and patterning of the optic vesicle. Current Topics in Developmental Biology, 93, 61–84.

    Article  PubMed  PubMed Central  Google Scholar 

  • Fuhrmann, S., Levine, E. M., & Reh, T. A. (2000). Extraocular mesenchyme patterns the optic vesicle during early eye development in the embryonic chick. Development, 127(21), 4599–4609.

    CAS  PubMed  Google Scholar 

  • Fuhrmann, S., Zou, C., & Levine, E. M. (2014). Retinal pigment epithelium development, plasticity, and tissue homeostasis. Experimental Eye Research, 123, 141–150.

    Article  CAS  PubMed  Google Scholar 

  • Fujimura, N., Taketo, M. M., Mori, M., Korinek, V., & Kozmik, Z. (2009). Spatial and temporal regulation of Wnt/beta-catenin signaling is essential for development of the retinal pigment epithelium. Developmental Biology, 334(1), 31–45.

    Article  CAS  PubMed  Google Scholar 

  • Galy, A., Neron, B., Planque, N., Saule, S., & Eychene, A. (2002). Activated MAPK/ERK kinase (MEK-1) induces transdifferentiation of pigmented epithelium into neural retina. Developmental Biology, 248(2), 251–264.

    Article  CAS  PubMed  Google Scholar 

  • Goding, C. R. (2000). Mitf from neural crest to melanoma: Signal transduction and transcription in the melanocyte lineage. Genes & Development, 14(14), 1712–1728.

    CAS  Google Scholar 

  • Gregory-Evans, C. Y., Wallace, V. A., & Gregory-Evans, K. (2013). Gene networks: Dissecting pathways in retinal development and disease. Progress in Retinal and Eye Research, 33, 40–66.

    Article  CAS  PubMed  Google Scholar 

  • Gregory-Evans, C. Y., Williams, M. J., Halford, S., & Gregory-Evans, K. (2004). Ocular coloboma: A reassessment in the age of molecular neuroscience. Journal of Medical Genetics, 41(12), 881–891.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Guillemot, F., & Cepko, C. L. (1992). Retinal fate and ganglion cell differentiation are potentiated by acidic FGF in an in vitro assay of early retinal development. Development, 114(3), 743–754.

    CAS  PubMed  Google Scholar 

  • Hilfer, S. R. (1983). Development of the eye of the chick embryo. Scanning Electron Microscopy, (Pt 3), 1353–1369.

    Google Scholar 

  • Hill, R. E., Favor, J., Hogan, B. L. M., Ton, C. C. T., Saunders, G. F., Hanson, I. M., et al. (1991). Mouse small eye results from mutations in a paired-like homeobox containing gene. Nature, 354, 522–525.

    Article  CAS  PubMed  Google Scholar 

  • Hodgkinson, C. A., Moore, K. J., Nakayama, A., Steingrimsson, E., Copeland, N. G., Jenkins, N. A., et al. (1993). Mutations at the mouse microphthalmia locus are associated with defects in a gene encoding a novel basic-helix-loop-helix-zipper protein. Cell, 74(2), 395–404.

    Article  CAS  PubMed  Google Scholar 

  • Holt, C. (1980). Cell movements in Xenopus eye development. Nature, 287(5785), 850–852.

    Article  CAS  PubMed  Google Scholar 

  • Horsford, D. J., Nguyen, M. T., Sellar, G. C., Kothary, R., Arnheiter, H., & McInnes, R. R. (2005). Chx10 repression of Mitf is required for the maintenance of mammalian neuroretinal identity. Development, 132(1), 177–187.

    Article  CAS  PubMed  Google Scholar 

  • Hyer, J., Kuhlman, J., Afif, E., & Mikawa, T. (2003). Optic cup morphogenesis requires pre-lens ectoderm but not lens differentiation. Developmental Biology, 259(2), 351–363.

    Article  CAS  PubMed  Google Scholar 

  • Hyer, J., Mima, T., & Mikawa, T. (1998). FGF1 patterns the optic vesicle by directing the placement of the neural retina domain. Development, 125(5), 869–877.

    CAS  PubMed  Google Scholar 

  • Ivanovitch, K., Cavodeassi, F., & Wilson, S. W. (2013). Precocious acquisition of neuroepithelial character in the eye field underlies the onset of eye morphogenesis. Developmental Cell, 27(3), 293–305.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kim, J. W., & Lemke, G. (2006). Hedgehog-regulated localization of Vax2 controls eye development. Genes & Development, 20(20), 2833–2847.

    Article  CAS  Google Scholar 

  • Kleinjan, D. A., Bancewicz, R. M., Gautier, P., Dahm, R., Schonthaler, H. B., Damante, G., et al. (2008). Subfunctionalization of duplicated zebrafish pax6 genes by cis-regulatory divergence. PLoS Genetics, 4(2), e29.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Kumar, J. P., & Moses, K. (2001). Eye specification in Drosophila: Perspectives and implications. Seminars in Cell & Developmental Biology, 12(6), 469–474.

    Article  CAS  Google Scholar 

  • Kwan, K. M., Otsuna, H., Kidokoro, H., Carney, K. R., Saijoh, Y., & Chien, C. B. (2012). A complex choreography of cell movements shapes the vertebrate eye. Development, 139(2), 359–372.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lagutin, O., Zhu, C. C., Furuta, Y., Rowitch, D. H., McMahon, A. P., & Oliver, G. (2001). Six3 promotes the formation of ectopic optic vesicle-like structures in mouse embryos. Developmental Dynamics, 221, 342–349.

    Article  CAS  PubMed  Google Scholar 

  • Lagutin, O. V., Zhu, C. C., Kobayashi, D., Topczewski, J., Shimamura, K., Puelles, L., et al. (2003). Six3 repression of Wnt signaling in the anterior neuroectoderm is essential for vertebrate forebrain development. Genes & Development, 17, 368–379.

    Article  CAS  Google Scholar 

  • Lane, B. M., & Lister, J. A. (2012). Otx but not Mitf transcription factors are required for zebrafish retinal pigment epithelium development. PLoS ONE, 7(11), e49357.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lee, J., Willer, J. R., Willer, G. B., Smith, K., Gregg, R. G., & Gross, J. M. (2008). Zebrafish blowout provides genetic evidence for Patched1-mediated negative regulation of Hedgehog signaling within the proximal optic vesicle of the vertebrate eye. Developmental Biology, 319(1), 10–22.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li, X., Perissi, V., Liu, F., Rose, D. W., & Rosenfeld, M. G. (2002). Tissue-specific regulation of retinal and pituitary precursor cell proliferation. Science, 297(5584), 1180–1183.

    CAS  PubMed  Google Scholar 

  • Li, Z., Joseph, N. M., & Easter, S. S. J. (2000). The morphogenesis of the zebrafish eye, including a fate map of the optic vesicle. Developmental Dynamics, 218, 175–188.

    Article  CAS  PubMed  Google Scholar 

  • Liu, I. S., Chen, J. D., Ploder, L., Vidgen, D., van der Kooy, D., Kalnins, V. I., et al. (1994). Developmental expression of a novel murine homeobox gene (Chx10): Evidence for roles in determination of the neuroretina and inner nuclear layer. Neuron, 13(2), 377–393.

    Article  CAS  PubMed  Google Scholar 

  • Liu, W., Lagutin, O., Swindell, E., Jamrich, M., & Oliver, G. (2010). Neuroretina specification in mouse embryos requires Six3-mediated suppression of Wnt8b in the anterior neural plate. The Journal of Clinical Investigation, 120(10), 3568–3577.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Loosli, F., Staub, W., Finger-Baier, K., Ober, E., Verkade, H., Wittbrodt, J., et al. (2003). Loss of eyes in zebrafish caused by mutation of chokh/rx3. EMBO Reports, 4, 894–899.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Loosli, F., Winkler, S., Burgtorf, C., Wurmbach, E., Ansorge, W., Henrich, T., et al. (2001). Medaka eyeless is the key factor linking retinal determination and eye growth. Development, 128, 4035–4044.

    CAS  PubMed  Google Scholar 

  • Loosli, F., Winkler, S., & Wittbrodt, J. (1999). Six3 overexpression initiates the formation of ectopic retina. Genes & Development, 13(6), 649–654.

    Article  CAS  Google Scholar 

  • Lopashov, G. V., & Stroeva, O. G. (1964). Development of the eye; experimental studies. Jerusalem: Israel Program for Scientific Translation.

    Google Scholar 

  • Lupo, G., Liu, Y., Qiu, R., Chandraratna, R. A., Barsacchi, G., He, R. Q., et al. (2005). Dorsoventral patterning of the Xenopus eye: A collaboration of Retinoid, Hedgehog and FGF receptor signaling. Development, 132(7), 1737–1748.

    Article  CAS  PubMed  Google Scholar 

  • Macdonald, R., Barth, K. A., Xu, Q., Holder, N., Mikkola, I., & Wilson, S. W. (1995). Midline signalling is required for Pax gene regulation and patterning of the eyes. Development, 121(10), 3267–3278.

    CAS  PubMed  Google Scholar 

  • Macdonald, R., Scholes, J., Strahle, U., Brennan, C., Holder, N., Brand, M., et al. (1997). The Pax protein Noi is required for commissural axon pathway formation in the rostral forebrain. Development, 124(12), 2397–2408.

    CAS  PubMed  Google Scholar 

  • Martinez-Morales, J. R., Dolez, V., Rodrigo, I., Zaccarini, R., Leconte, L., Bovolenta, P., et al. (2003). OTX2 activates the molecular network underlying retina pigment epithelium differentiation. Journal of Biological Chemistry, 278(24), 21721–21731.

    Article  CAS  PubMed  Google Scholar 

  • Martinez-Morales, J. R., Rembold, M., Greger, K., Simpson, J. C., Brown, K. E., Quiring, R., et al. (2009). ojoplano-mediated basal constriction is essential for optic cup morphogenesis. Development, 136(13), 2165–2175.

    Article  CAS  PubMed  Google Scholar 

  • Martinez-Morales, J. R., Rodrigo, I., & Bovolenta, P. (2004). Eye development: A view from the retina pigmented epithelium. BioEssays, 26(7), 766–777.

    Article  CAS  PubMed  Google Scholar 

  • Martinez-Morales, J. R., Signore, M., Acampora, D., Simeone, A., & Bovolenta, P. (2001). Otx genes are required for tissue specification in the developing eye. Development, 128(11), 2019–2030.

    CAS  PubMed  Google Scholar 

  • Martinez-Morales, J. R., & Wittbrodt, J. (2009). Shaping the vertebrate eye. Current Opinion in Genetics & Development, 19(5), 511–517.

    Article  CAS  Google Scholar 

  • Mathers, P. H., Grinberg, A., Mahon, K. A., & Jamrich, M. (1997). The Rx homeobox gene is essential for vertebrate eye development. Nature, 387(6633), 603–607.

    Article  CAS  PubMed  Google Scholar 

  • Matsuo, I., Kuratani, S., Kimura, C., Takeda, N., & Aizawa, S. (1995). Mouse Otx2 functions in the formation and patterning of rostral head. Genes & Development, 9(21), 2646–2658.

    Article  CAS  Google Scholar 

  • Medina-Martinez, O., Amaya-Manzanares, F., Liu, C., Mendoza, M., Shah, R., Zhang, L., et al. (2009). Cell-autonomous requirement for rx function in the mammalian retina and posterior pituitary. PLoS ONE, 4(2), e4513.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Mochii, M., Ono, T., Matsubara, Y., & Eguchi, G. (1998). Spontaneous transdifferentiation of quail pigmented epithelial cell is accompanied by a mutation in the Mitf gene. Developmental Biology, 196(2), 145–159.

    Article  CAS  PubMed  Google Scholar 

  • Mui, S. H., Kim, J. W., Lemke, G., & Bertuzzi, S. (2005). Vax genes ventralize the embryonic eye. Genes & Development, 19(10), 1249–1259.

    Article  CAS  Google Scholar 

  • Muller, F., Rohrer, H., & Vogel-Hopker, A. (2007). Bone morphogenetic proteins specify the retinal pigment epithelium in the chick embryo. Development, 134(19), 3483–3493.

    Article  PubMed  CAS  Google Scholar 

  • Nakayama, A., Nguyen, M. T., Chen, C. C., Opdecamp, K., Hodgkinson, C. A., & Arnheiter, H. (1998). Mutations in microphthalmia, the mouse homolog of the human deafness gene MITF, affect neuroepithelial and neural crest-derived melanocytes differently. Mechanisms of Development, 70(1–2), 155–166.

    Article  CAS  PubMed  Google Scholar 

  • Nakayama, T., Fish, M. B., Fisher, M., Oomen-Hajagos, J., Thomsen, G. H., & Grainger, R. M. (2013). Simple and efficient CRISPR/Cas9-mediated targeted mutagenesis in Xenopus tropicalis. Genesis, 51(12), 835–843.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nguyen, M. T., & Arnheiter, H. (2000). Signaling and transcriptional regulation in early mammalian eye development: A link between FGF and MITF. Development, 127, 3581–3591.

    CAS  PubMed  Google Scholar 

  • Peters, M. A. (2002). Patterning the neural retina. Current Opinion in Neurobiology, 12(1), 43–48.

    Article  CAS  PubMed  Google Scholar 

  • Phillips, M. J., Perez, E. T., Martin, J. M., Reshel, S. T., Wallace, K. A., Capowski, E. E., et al. (2014). Modeling human retinal development with patient-specific induced pluripotent stem cells reveals multiple roles for visual system homeobox 2. Stem Cells, 32(6), 1480–1492.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Picker, A., Cavodeassi, F., Machate, A., Bernauer, S., Hans, S., Abe, G., et al. (2009). Dynamic coupling of pattern formation and morphogenesis in the developing vertebrate retina. PLoS Biology, 7(10), e1000214.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Pittack, C., Grunwald, G. B., & Reh, T. A. (1997). Fibroblast growth factors are necessary for neural retina but not pigmented epithelium differentiation in chick embryos. Development, 124(4), 805–816.

    CAS  PubMed  Google Scholar 

  • Pittack, C., Jones, M., & Reh, T. A. (1991). Basic fibroblast growth factor induces retinal pigment epithelium to generate neural retina in vitro. Development, 113, 577–588.

    CAS  PubMed  Google Scholar 

  • Planque, N., Turque, N., Opdecamp, K., Bailly, M., Martin, P., & Saule, S. (1999). Expression of the microphthalmia-associated basic helix-loop-helix leucine zipper transcription factor Mi in avian neuroretina cells induces a pigmented phenotype. Cell Growth & Differentiation, 10(7), 525–536.

    CAS  Google Scholar 

  • Porges, Y., Gershoni-Baruch, R., Leibu, R., Goldscher, D., Zonis, S., Shapira, I., et al. (1992). Hereditary microphthalmia with colobomatous cyst. American Journal of Ophthalmology, 114(1), 30–34.

    Article  CAS  PubMed  Google Scholar 

  • Porter, F. D., Drago, J., Xu, Y., Cheema, S. S., Wassif, C., Huang, S. P., et al. (1997). Lhx2, a LIM homeobox gene, is required for eye, forebrain, and definitive erythrocyte development. Development, 124(15), 2935–2944.

    CAS  PubMed  Google Scholar 

  • Raymond, S. M., & Jackson, I. J. (1995). The retinal pigmented epithelium is required for development and maintenance of the mouse neural retina. Current Biology, 5(11), 1286–1295.

    Article  CAS  PubMed  Google Scholar 

  • Rebagliati, M. R., Toyama, R., Haffter, P., & Dawid, I. B. (1998). Cyclops encodes a nodal-related factor involved in midline signaling. Proceedings of the National Academy of Sciences, 95(17), 9932–9937.

    Article  CAS  Google Scholar 

  • Rembold, M., Loosli, F., Adams, R. J., & Wittbrodt, J. (2006). Individual cell migration serves as the driving force for optic vesicle evagination. Science, 313(5790), 1130–1134.

    Article  CAS  PubMed  Google Scholar 

  • Rohr, K. B., Barth, K. A., Varga, Z. M., & Wilson, S. W. (2001). The nodal pathway acts upstream of hedgehog signaling to specify ventral telencephalic identity. Neuron, 29(2), 341–351.

    Article  CAS  PubMed  Google Scholar 

  • Rowan, S., & Cepko, C. L. (2004). Genetic analysis of the homeodomain transcription factor Chx10 in the retina using a novel multifunctional BAC transgenic mouse reporter. Developmental Biology, 271(2), 388–402.

    Article  CAS  PubMed  Google Scholar 

  • Sampath, K., Rubinstein, A. L., Cheng, A. M., Liang, J. O., Fekany, K., Solnica-Krezel, L., et al. (1998). Induction of the zebrafish ventral brain and floorplate requires cyclops/nodal signalling. Nature, 395(6698), 185–189.

    Article  CAS  PubMed  Google Scholar 

  • Samuel, A., Housset, M., Fant, B., & Lamonerie, T. (2014). Otx2 ChIP-seq reveals unique and redundant functions in the mature mouse retina. PLoS ONE, 9(2), e89110.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Schwarz, M., Cecconi, F., Bernier, G., Andrejewski, N., Kammandel, B., Wagner, M., et al. (2000). Spatial specification of mammalian eye territories by reciprocal transcriptional repression of Pax2 and Pax6. Development, 127(20), 4325–4334.

    CAS  PubMed  Google Scholar 

  • Seth, A., Culverwell, J., Walkowicz, M., Toro, S., Rick, J. M., Neuhauss, S. C., et al. (2006). belladonna/(Ihx2) is required for neural patterning and midline axon guidance in the zebrafish forebrain. Development, 133(4), 725–735.

    Article  CAS  PubMed  Google Scholar 

  • Sinn, R., & Wittbrodt, J. (2013). An eye on eye development. Mechanisms of Development, 130(6–8), 347–358.

    Article  CAS  PubMed  Google Scholar 

  • Steinfeld, J., Steinfeld, I., Coronato, N., Hampel, M. L., Layer, P. G., Araki, M., et al. (2013). RPE specification in the chick is mediated by surface ectoderm-derived BMP and Wnt signalling. Development, 140(24), 4959–4969.

    Article  CAS  PubMed  Google Scholar 

  • Steingrimsson, E., Copeland, N. G., & Jenkins, N. A. (2004). Melanocytes and the microphthalmia transcription factor network. Annual Review of Genetics, 38, 365–411.

    Article  CAS  PubMed  Google Scholar 

  • Strauss, O. (2005). The retinal pigment epithelium in visual function. Physiological Reviews, 85(3), 845–881.

    Article  CAS  PubMed  Google Scholar 

  • Suzuki, K. T., Isoyama, Y., Kashiwagi, K., Sakuma, T., Ochiai, H., Sakamoto, N., et al. (2013). High efficiency TALENs enable F0 functional analysis by targeted gene disruption in Xenopus laevis embryos. Biology Open, 2(5), 448–452.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Svoboda, K. K., & O’Shea, K. S. (1987). An analysis of cell shape and the neuroepithelial basal lamina during optic vesicle formation in the mouse embryo. Development, 100(2), 185–200.

    CAS  PubMed  Google Scholar 

  • Take-uchi, M., Clarke, J. D., & Wilson, S. W. (2003). Hedgehog signalling maintains the optic stalk-retinal interface through the regulation of Vax gene activity. Development, 130(5), 955–968.

    Article  CAS  PubMed  Google Scholar 

  • Tena, J. J., Gonzalez-Aguilera, C., Fernandez-Minan, A., Vazquez-Marin, J., Parra-Acero, H., Cross, J. W., et al. (2014). Comparative epigenomics in distantly related teleost species identifies conserved cis-regulatory nodes active during the vertebrate phylotypic period. Genome Research.

    Google Scholar 

  • Tetreault, N., Champagne, M. P., & Bernier, G. (2009). The LIM homeobox transcription factor Lhx2 is required to specify the retina field and synergistically cooperates with Pax6 for Six6 trans-activation. Developmental Biology, 327(2), 541–550.

    Article  CAS  PubMed  Google Scholar 

  • Torres, M., Gómez-Pardo, E., & Gruss, P. (1996). Pax2 contributes to inner ear patterning and optic nerve trajectory. Development, 122, 3381–3391.

    CAS  PubMed  Google Scholar 

  • Treisman, J. E. (1999). A conserved blueprint for the eye? BioEssays, 21(10), 843–850.

    Article  CAS  PubMed  Google Scholar 

  • Turque, N., Denhez, F., Martin, P., Planque, N., Bailly, M., Begue, A., et al. (1996). Characterization of a new melanocyte-specific gene (QNR-71) expressed in v-myc-transformed quail neuroretina. EMBO Journal, 15(13), 3338–3350.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Viczian, A. S., Solessio, E. C., Lyou, Y., & Zuber, M. E. (2009). Generation of functional eyes from pluripotent cells. PLoS Biology, 7(8), e1000174.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Vogel-Hopker, A., Momose, T., Rohrer, H., Yasuda, K., Ishihara, L., & Rapaport, D. H. (2000). Multiple functions of fibroblast growth factor-8 (FGF-8) in chick eye development. Mechanisms of Development, 94(1–2), 25–36.

    Article  CAS  PubMed  Google Scholar 

  • Wagner, G. P. (2007). The developmental genetics of homology. Nature Reviews Genetics, 8(6), 473–479.

    Article  CAS  PubMed  Google Scholar 

  • Wallis, D. E., Roessler, E., Hehr, U., Nanni, L., Wiltshire, T., Richieri-Costa, A., et al. (1999). Mutations in the homeodomain of the human SIX3 gene cause holoprosencephaly. Nature Genetics, 22(2), 196–198.

    Article  CAS  PubMed  Google Scholar 

  • Westenskow, P., Piccolo, S., & Fuhrmann, S. (2009). Beta-catenin controls differentiation of the retinal pigment epithelium in the mouse optic cup by regulating Mitf and Otx2 expression. Development, 136(15), 2505–2510.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wilson, S. W., & Houart, C. (2004). Early steps in the development of the forebrain. Developmental Cell, 6(2), 167–181.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yasuoka, Y., Suzuki, Y., Takahashi, S., Someya, H., Sudou, N., Haramoto, Y., et al. (2014). Occupancy of tissue-specific cis-regulatory modules by Otx2 and TLE/Groucho for embryonic head specification. Nature Communications, 5, 4322.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yin, J., Morrissey, M. E., Shine, L., Kennedy, C., Higgins, D. G., & Kennedy, B. N. (2014). Genes and signaling networks regulated during zebrafish optic vesicle morphogenesis. BMC Genomics, 15, 825.

    Article  PubMed  PubMed Central  Google Scholar 

  • Zhang, L., Mathers, P. H., & Jamrich, M. (2000). Function of Rx, but not Pax6, is essential for the formation of retinal progenitor cells in mice. Genesis, 28(3–4), 135–142.

    Article  CAS  PubMed  Google Scholar 

  • Zhao, S., Hung, F. C., Colvin, J. S., White, A., Dai, W., Lovicu, F. J., et al. (2001). Patterning the optic neuroepithelium by FGF signaling and Ras activation. Development, 128(24), 5051–5060.

    CAS  PubMed  Google Scholar 

  • Zou, C., & Levine, E. M. (2012). Vsx2 controls eye organogenesis and retinal progenitor identity via homeodomain and non-homeodomain residues required for high affinity DNA binding. PLoS Genetics, 8(9), e1002924.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zuber, M. E., Gestri, G., Viczian, A. S., Barsacchi, G., & Harris, W. A. (2003). Specification of the vertebrate eye by a network of eye field transcription factors. Development, 130(21), 5155–5167.

    Article  CAS  PubMed  Google Scholar 

  • Zuber, M. E., Perron, M., Philpott, A., Bang, A., & Harris, W. A. (1999). Giant eyes in Xenopus laevis by overexpression of XOptx2. Cell, 98(3), 341–352.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by grants BFU2011-22916 and P11-CVI-7256 to JRMM.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Juan R. Martinez-Morales .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Martinez-Morales, J.R. (2016). Vertebrate Eye Gene Regulatory Networks. In: Castelli-Gair Hombría, J., Bovolenta, P. (eds) Organogenetic Gene Networks. Springer, Cham. https://doi.org/10.1007/978-3-319-42767-6_9

Download citation

Publish with us

Policies and ethics