Skip to main content
Log in

Information concentration in common value environments

  • Original Paper
  • Published:
Review of Economic Design Aims and scope Submit manuscript

Abstract

We consider how information concentration affects a seller’s revenue in common value auctions. The common value is a function of \(n\) random variables partitioned among \(m \le n\) bidders. For each partition, the seller devises an optimal mechanism. We show that whenever the value function allows scalar sufficient statistics for each player’s signals, the mechanism design problem is well-defined. Additionally, whenever a common regularity condition is satisfied, a coarser partition always reduces revenues. In particular, any merger or collusion among bidders reduces revenue.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Notes

  1. Common value auctions appear especially sensitive to asymmetries. Bikhchandani and Riley (1991) notes that even vanishing asymmetries can lead an advantaged bidder to win the auction with probability 1. Klemperer (1998) provides discussion of this result in relation to the FCC spectrum auctions. Symmetric models can significantly overstate price changes following a merger of smaller firms in asymmetric industries (Dalkir et al. 2000; Tschantz et al. 2000).

  2. The differentiability assumption is very mild. By Assumption 1, the functions \(\phi ^{A_{i}}\) are monotone and thus almost everywhere differentiable.

  3. Note also that, we represent the transition from concentrated to non-concentrated environments at a very abstract level. Any bidding ring can be dissolved into its component members. This has the flavor of ex-post implementation in its incentive compatibility requirement for the representative of the ring. In multidimensional problems, Bikhchandani (2006) shows that a single-crossing condition akin to scalarization is required for the existence of ex-post implementation.

  4. The existence of an optimal scalar mechanism implies that a bidder does not receive information rents for equivalent types—types that share the same value of a sufficient statistic. If this were not the case, then the auctioneer, through sophisticated incentive constraints, would pay a bidder for revealing a specific type among equivalent types (Armstrong and Rochet 1999).

  5. Thomas (2004) demonstrates how “a profitable efficiency increasing merger of two relatively small firms creates a stronger competitor that can cause the expected price to fall [in procurement settings], despite the resulting increase in market concentration”. (p. 688).

  6. For example, see the comments of Andrew R. Dick, former Acting Chief of the policy section at the DOJ Antitrust Division, J. Mark Gidley, Assistant Attorney General for Antitrust, and David T. Scheffman, former Director of the FTC’s Bureau of Competition, who all suggest that asymmetry-reducing mergers can provide market efficiencies (FTC/DOJ 2004).

  7. Bidder 1’s payment will be zero.

References

  • Armstrong M, Rochet J-C (1999) Multi-dimensional screening: a user’s guide. Eur Econ Rev 43(4–6):959–979

    Article  Google Scholar 

  • Athey S, Levin J (2001) The value of information in monotone decision problems. Working Paper, MIT

  • Bagnoli M, Bergstrom T (2005) Log-concave probability and its applications. Econ Theory 26(2):445–469

    Article  Google Scholar 

  • Bergemann D, Valimaki J (2002) Information acquisition and efficient mechanism design. Econometrica 70(3):1007–1033

    Article  Google Scholar 

  • Biais B, Martimort D, Rochet J-C (2000) Competing mechanisms in a common value environment. Econometrica 68(4):799–837

    Article  Google Scholar 

  • Bikhchandani S, Riley J (1991) Equilibria in open common value auctions. J Econ Theory 53(1):101–130

    Article  Google Scholar 

  • Bikhchandani S (2006) Ex post implementation in environments with private goods. Theor Econ 1(3):369–393

    Google Scholar 

  • Bulow J, Klemperer P (1996) Auctions versus negotiations. Am Econ Rev 86(1):180–194

    Google Scholar 

  • Bulow J, Klemperer P (2002) Prices and the winner’s curse. RAND J Econ 33(1):1–21

    Article  Google Scholar 

  • Cantillon E (2008) The effect of bidders’ asymmetries on expected revenue in auctions. Games Econ Behav 62(1):1–25

    Article  Google Scholar 

  • Crémer J, McLean R (1988) Full extraction of the surplus in bayesian and dominant strategy auctions. Econometrica 56(6):1247–1257

    Article  Google Scholar 

  • Dagen R, Richards D (2006) Merger theory and evidence: the baby-food case reconsidered. Tufts University Department of Economics, Working Paper

  • Dalkir S, Logan JW, Masson RT (2000) Mergers in symmetric and asymmetric noncooperative auction markets: the effects on prices and efficiency. Int J Ind Organ 18(3):383–413

    Article  Google Scholar 

  • DeBrock L, Smith J (1983) Joint bidding, information pooling, and the performance of petroleum lease auctions. Bell J Econ 14(2):395–404

    Article  Google Scholar 

  • Froeb L, Shor M (2005) Auction models. In: Harkider JD (eds) Econometrics: legal, practical, and technical issues, pp 225–246. American Bar Association Section of Antitrust Law

  • FTC/DOJ (2004) Joint workshop on merger enforcement. February 17–19, Washington, D.C.

  • Goeree JK, Offerman T (2002) Efficiency in auctions with private and common values: an experimental study. Am Econ Rev 93(3):625–643

    Article  Google Scholar 

  • Jackson MO (2009) Non-existence of equilibrium in vickrey, second-price, and english auctions. Rev Econ Des 13(1):137–145

    Google Scholar 

  • Klemperer P (2005) Bidding markets. UK Competition Commission, Occasional Paper No 1

  • Klemperer P (1998) Auctions with almost common values: the ‘wallet game’ and its applications. Eur Econ Rev 42(3–5):757–769

    Article  Google Scholar 

  • Krishna V, Morgan J (1997) (anti-) competitive effects of joint bidding and bidder restrictions. Penn State University and Princeton University, Working Paper

  • Mares V, Harstad RM (2003) Private information revelation in common-value auctions. J Econ Theory 109(2):264–282

    Article  Google Scholar 

  • Mares V, Shor M (2008) Industry concentration in common value auctions. Econ Theory 35:37–56

    Article  Google Scholar 

  • Mares V, Shor M (2012) On the competitive effects of bidding syndicates. B.E. J Econ Anal Policy [Frontiers] 12:1–32

    Google Scholar 

  • Matthews SA (1984) Information acquisition in discriminatory auctions. In: Boyer M, Kihlstrom RE (eds) Bayesian models in economic theory. Elsevier Science, pp 181–207

  • McAfee RP, Reny PJ (1992) The competitive effects of mergers between asymmetric firms. Correl Inf Mech Des 60(2):395–421

    Google Scholar 

  • Myerson R (1981) Optimal auction design. Math Oper Res 6(1):58–73

    Article  Google Scholar 

  • Persico N (2000) Information acquisition in auctions. Econometrica 68(1):135–148

    Article  Google Scholar 

  • Prékopa A (1971) Logarithmic concave measures with application to stochastic programming. ACTA Sci Math (Szeged) 32:301–316

    Google Scholar 

  • Prékopa A (1973) On logarithmic concave measures and functions. ACTA Sci Math (Szeged) 34:335–343

    Google Scholar 

  • Reny PJ, Zamir S (2004) On the existence of pure strategy monotone equilibria in asymmetric first-price auctions. Econometrica 72(4):1105–1125

    Article  Google Scholar 

  • Thomas CJ (2004) The competitive effects of mergers between asymmetric firms. Int J Ind Organ 22(5):679–692

    Article  Google Scholar 

  • Tschantz S, Crooke P, Froeb L (2000) Mergers in sealed vs. oral auctions. Int J Econ Bus 7(2):201–213

    Article  Google Scholar 

  • Waehrer K, Perry MK (2003) The effects of mergers in open-auction markets. RAND J Econ 34(2):287–304

    Article  Google Scholar 

  • Werden GJ, Froeb LM (1994) The effects of mergers in differentiated products industries: logit demand and merger policy. J Law Econ Organ 10(2):407–426

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mikhael Shor.

Additional information

The authors would like to thank Luciano de Castro, Luke Froeb, Paul Klemperer, Rich McLean, Rakesh Vohra, and an anonymous referee for valuable comments and suggestions.

Appendix

Appendix

1.1 Proof of Theorem  1

The proof requires three lemmas. Fix the player for whom the value functions admit sufficient statistics to be player 1.

Lemma 1

Under any incentive compatible mechanism, \(\eta ,\) the expected surplus of equivalent types is equal.

Proof

For every mechanism \(\eta =(p_{i}(\cdot ),\xi _{i}(\cdot ))\) define

$$\begin{aligned} \widetilde{V}_{j}(\mathbf{s}_{j};\mathbf{t}_{j})=\int V_{j}(\mathbf{s}_{j}, \mathbf{s}_{-j})p_{j}(\mathbf{t}_{j},\mathbf{s}_{-j})f_{-j}(\mathbf{s}_{-j})d \mathbf{s}_{-j} \end{aligned}$$

and

$$\begin{aligned} \widetilde{\xi }_{j}(\mathbf{t}_{j})=\int \xi _{j}(\mathbf{t}_{j},\mathbf{s} _{-j})f_{-j}(\mathbf{s}_{-j})d\mathbf{s}_{-j} \end{aligned}$$

Under mechanism \(\eta \), the expected payoff for player \(j\) who has information \(\mathbf{s}_{j}\) and reports \(\mathbf{t}_{j}\) is

$$\begin{aligned} \widetilde{V}_{j}(\mathbf{s}_{j};\mathbf{t}_{j})-\widetilde{\xi }_{j}( \mathbf{t}_{j}). \end{aligned}$$

The interim incentive compatibility constraint for player \(1\) is

$$\begin{aligned} \widetilde{V}_{1}(\mathbf{s}_{1};\mathbf{s}_{1})-\widetilde{\xi }_{1}( \mathbf{s}_{1})\ge \widetilde{V}_{1}(\mathbf{s}_{1};\mathbf{t}_{1})- \widetilde{\xi }_{1}(\mathbf{t}_{1}) \end{aligned}$$
(5)

for all \(\mathbf{s}_{1}\) and \(\mathbf{t}_{1}.\) For two equivalent types \( \mathbf{s}_{1}\) and \(\mathbf{s}_{1}^{\prime }\) and any \(\mathbf{t}_{1}\), we have by definition

$$\begin{aligned} \widetilde{V}_{1}(\mathbf{s}_{1};\mathbf{t}_{1})=\widetilde{V}_{1}(\mathbf{s} _{1}^{\prime };\mathbf{t}_{1}) \end{aligned}$$

and in particular

$$\begin{aligned} \widetilde{V}_{1}(\mathbf{s}_{1};\mathbf{s}_{1})&= \widetilde{V}_{1}(\mathbf s _{1}^{\prime };\mathbf{s}_{1}), \end{aligned}$$
(6)
$$\begin{aligned} \widetilde{V}_{1}(\mathbf{s}_{1}^{\prime };\mathbf{s}_{1}^{\prime })&= \widetilde{V}_{1}(\mathbf{s}_{1};\mathbf{s}_{1}^{\prime }). \end{aligned}$$
(7)

Combining expressions, we have

$$\begin{aligned} \widetilde{V}_{1}(\mathbf{s}_{1};\mathbf{s}_{1})-\widetilde{V}_{1}(\mathbf{s} _{1}^{\prime };\mathbf{s}_{1}^{\prime })=\widetilde{V}_{1}(\mathbf{s}_{1}; \mathbf{s}_{1})-\widetilde{V}_{1}(\mathbf{s}_{1};\mathbf{s}_{1}^{\prime })\ge \widetilde{\xi }_{1}(\mathbf{s}_{1})-\widetilde{\xi }_{1}(\mathbf{s}_{1}^{\prime }) \end{aligned}$$
(8)

where the equality holds by (7) and the inequality by (5), substituting \(\mathbf{s}_{1}^{\prime }\) for \(\mathbf{t}_{1}.\) Also, by substituting \(\mathbf{s}_{1}\) for \(\mathbf{t}_{1}\) and \(\mathbf{s} _{1}^{\prime }\) for \(\mathbf{s}_{1}\) in (5), we have

$$\begin{aligned} \widetilde{\xi }_{1}(\mathbf{s}_{1})-\widetilde{\xi }_{1}(\mathbf{s} _{1}^{\prime })\ge \widetilde{V}_{1}(\mathbf{s}_{1}^{\prime };\mathbf{s} _{1})-\widetilde{V}_{1}(\mathbf{s}_{1}^{\prime };\mathbf{s}_{1}^{\prime })= \widetilde{V}_{1}(\mathbf{s}_{1};\mathbf{s}_{1})-\widetilde{V}_{1}(\mathbf{s} _{1}^{\prime };\mathbf{s}_{1}^{\prime }), \end{aligned}$$
(9)

where the equality follows from (6). Combining (8) and (9), we obtain

$$\begin{aligned} \widetilde{V}_{1}(\mathbf{s}_{1};\mathbf{s}_{1})-\widetilde{V }_{1}(\mathbf{s}_{1}^{\prime };\mathbf{s}_{1}^{\prime }) = \widetilde{\xi }_{1}(\mathbf{s}_{1})-\widetilde{\xi }_{1}(\mathbf{s} _{1}^{\prime }) \end{aligned}$$

\(\square \)

Consider the mechanism \(\eta ^{\prime }\) as defined by Eqs. (1) and (2).

Lemma 2

If mechanism \(\eta \) is incentive compatible, then \(\eta ^{\prime }\) is an incentive compatible mechanism.

Proof

Define \(f_{\phi ^{A_1}}\) as the density of \(\phi ^{A_1}(\mathbf{S}_{1}).\) Also, for every \(\mathbf{s}_{1}\), such that \(\phi ^{A_1}(\mathbf{s}_{1})=\alpha \), denote by

$$\begin{aligned} V_{i}^{A_{1}}(\alpha ;\mathbf{s}_{-1})=V_{i}^{{}}(\mathbf{s}_{1},\mathbf{s}_{-1}) \end{aligned}$$

the parametrization of \(i\)’s value function based on the sufficient statistic’s value. Since \(\eta \) is a mechanism, we have \(p_{i}(\mathbf{s} _{1},\mathbf{s}_{-1})\ge 0\) and \(\sum p_{i}(\mathbf{s}_{1},\mathbf{s} _{-1})\le 1\) for every \(i\) and every \((\mathbf{s}_{1},\mathbf s _{-1})\). This implies by integration over the set of equivalent types that for \(i\) and \(\mathbf{s}_{1},\)

$$\begin{aligned} \int p_{i}(\mathbf{t}_{1},\mathbf{s}_{-1})f_{1}(\mathbf{t}_{1}|\phi ^{A_1}( \mathbf{t}_{1})=\phi ^{A_1}(\mathbf{s}_{1}))d\mathbf{t}_{1}\ge 0\Leftrightarrow p_{i}^{\prime }(\phi ^{A_1}(\mathbf{s}_{1}),\mathbf{s} _{-1})\ge 0 \end{aligned}$$

and similarly

$$\begin{aligned} \sum p_{i}^{\prime }(\phi ^{A_1}(\mathbf{s}_{1}),\mathbf{s}_{-1})\le 1. \end{aligned}$$

The interim incentive compatibility condition for player \(j\) under mechanism \(\eta \) is

$$\begin{aligned} \widetilde{V}_{j}(\mathbf{s}_{j};\mathbf{s}_{j})-\widetilde{\xi }_{j}( \mathbf{s}_{j})\ge \widetilde{V}_{j}(\mathbf{s}_{j};\mathbf{t}_{j})- \widetilde{\xi }_{j}(\mathbf{t}_{j}) \end{aligned}$$

for all \(\mathbf{s}_{j}\) and \(\mathbf{t}_{j}.\) For bidder \(j\ne 1\),

$$\begin{aligned} \widetilde{\xi }_{j}(\mathbf{t}_{j})&\!=\!&\int \xi _{j}(\mathbf{t}_{j},\mathbf s _{1},\mathbf{s}_{-1j})f_{1}(\mathbf{s}_{1})f_{-1j}(\mathbf{s}_{-1j})d \mathbf{s}_{-j} \\&\!=\!&\int f_{-1j}(\mathbf{s}_{-1j})\int f_{\phi ^{A_1}}(\alpha )\int \xi _{j}(\mathbf{t}_{j},\mathbf{s}_{1},\mathbf{s}_{-1j})f_{1}(\mathbf{s}_{1}|\phi ^{A_1}(\mathbf{s}_{1})\!=\!\alpha )d\mathbf{s}_{1}d\alpha d\mathbf{s}_{-1j} \\&\!=\!&\int \int \xi _{j}^{\prime }(\alpha ,\mathbf{t}_{j},\mathbf{s} _{-1j})f_{-1j}(\mathbf{s}_{-1j})f_{\phi ^{A_1}}(\alpha )d\mathbf{s} _{-1j}d\alpha \\&\!=\!&\widetilde{\xi }_{j}^{\prime }(\mathbf{t}_{j}). \end{aligned}$$

Similarly, for all \(\mathbf{s}_{j}\) and \(\mathbf{t}_{j},\)

$$\begin{aligned} \widetilde{V}_{j}(\mathbf{s}_{j};\mathbf{t}_{j})&= \int V_{j}(\mathbf{s}_{j}, \mathbf{s}_{1},\mathbf{s}_{-1j})p_{j}(\mathbf{t}_{j},\mathbf{s}_{1},\mathbf s _{-1j})f_{1}(\mathbf{s}_{1})f_{-1j}(\mathbf{s}_{-1j})d\mathbf{s}_{-j} \\&= \int \int V_{j}^{A_{1}}(\alpha ;\mathbf{s}_{j},\mathbf{s} _{-1j})p_{j}^{\prime }(\alpha ,\mathbf{t}_{j},\mathbf{s}_{-1j})f_{-1j}( \mathbf{s}_{-1j})f_{\phi ^{A_1}}(\alpha )d\mathbf{s}_{-1j}d\alpha \\&= \widetilde{V}_{j}^{\prime }(\mathbf{s}_{j};\mathbf{t}_{j}). \end{aligned}$$

Substituting the identical terms into the incentive compatibility constraint we get

$$\begin{aligned} \widetilde{V}_{j}^{\prime }(\mathbf{s}_{j};\mathbf{s}_{j})-\widetilde{\xi } _{j}^{\prime }(\mathbf{s}_{j})\ge \widetilde{V}_{j}^{\prime }(\mathbf{s} _{j};\mathbf{t}_{j})-\widetilde{\xi }_{j}^{\prime }(\mathbf{t}_{j}) \end{aligned}$$

for all \(\mathbf{s}_{j}\) and \(\mathbf{t}_{j}\) which indicates that mechanism \(\eta ^{\prime }\) is incentive compatible for player \(j\).

Finally, we need to show that player \(1\)’s incentive compatibility constraint is satisfied under mechanism \(\eta ^{\prime }.\) Define

$$\begin{aligned} \widetilde{V}_{1}^{\prime }(\phi ^{A_1}(\mathbf{s}_{1});\phi ^{A_1}(\mathbf{t} _{1}))=\int \widetilde{V}_{1}(\mathbf{s}_{1};\mathbf y _{1})f_{1}(\mathbf y _{1}^{{}}|\phi ^{A_1}(\mathbf y _{1})=\phi ^{A_1}(\mathbf{t}_{1}))d\mathbf y _1. \end{aligned}$$

and

$$\begin{aligned} \widetilde{\xi }_{1}^{\prime }(\phi ^{A_1}(\mathbf{t}_{1}))=\int \widetilde{ \xi }_{1}(\mathbf y _{1})f_{1}(\mathbf y _{1}^{{}}|\phi ^{A_1}(\mathbf y _{1}^{{}})=\phi ^{A_1}(\mathbf{t}_{1}))d\mathbf y _1 \end{aligned}$$

which are player 1’s expected asset value and expected payment when his type is equivalent to \(\mathbf{s}_1\) and he reports a type equivalent to \( \mathbf{t}_1\).

The previous lemma establishes that for equivalent types \(\mathbf{s}_{1}\) and \(\mathbf{s}_{1}^{\prime }\),

$$\begin{aligned} \widetilde{V}_{1}(\mathbf{s}_{1};\mathbf{s}_{1})-\widetilde{\xi }_{1}( \mathbf{s}_{1})=\widetilde{V}_{1}(\mathbf{s}_{1}^{\prime };\mathbf{s}_{1}^{\prime })- \widetilde{\xi }_{1}(\mathbf{s}_{1}^{\prime }). \end{aligned}$$

and therefore, by the definition of equivalent types,

$$\begin{aligned} \widetilde{V}_{1}(\mathbf{s}_{1};\mathbf{s}_{1})-\widetilde{\xi }_{1}( \mathbf{s}_{1})=\widetilde{V}_{1}(\mathbf{s}_{1};\mathbf{s}_{1}^{\prime })- \widetilde{\xi }_{1}(\mathbf{s}_{1}^{\prime }). \end{aligned}$$

Integrating these relationships along the set of equivalent types with respect to \(f_{1}(\mathbf{s}_{1}^{\prime }|\phi ^{A_1}(\mathbf{s}_{1}^{\prime })=\phi ^{A_1}(\mathbf{s}_{1}))\) results in

$$\begin{aligned} \widetilde{V}_{1}(\mathbf{s}_{1};\mathbf{s}_{1})-\widetilde{\xi }_{1}( \mathbf{s}_{1}) = \widetilde{V}_{1}^{\prime }(\phi ^{A_1}(\mathbf{s}_{1});\phi ^{A_1}(\mathbf{s}_{1}))-\widetilde{\xi }_{1}^{\prime }(\phi ^{A_1}(\mathbf{s} _{1})). \end{aligned}$$
(10)

Player 1’s incentive compatibility constraint under \(\eta \) for nonequivalent types \(\mathbf{s}_{1}\) and \(\mathbf{t}_{1}\) is

$$\begin{aligned} \widetilde{V}_{1}(\mathbf{s}_{1};\mathbf{s}_{1})-\widetilde{\xi }_{1}( \mathbf{s}_{1})\ge \widetilde{V}_{1}(\mathbf{s}_{1};\mathbf{t}_{1}) - \widetilde{\xi }_{1}(\mathbf{t}_{1}). \end{aligned}$$

Integrating these relationships along the set of equivalent types to \( \mathbf{t}_1\) yields

$$\begin{aligned} \widetilde{V}_{1}(\mathbf{s}_{1};\mathbf{s}_{1})-\widetilde{\xi }_{1}( \mathbf{s}_{1})\ge \widetilde{V}_{1}^{\prime }(\phi ^{A_1} (\mathbf{s} _{1});\phi ^{A_1} (\mathbf{t}_{1})) -\widetilde{\xi }_{1}^{\prime }(\phi ^{A_1}(\mathbf t _{1})). \end{aligned}$$
(11)

Combining (10) and (11) yields

$$\begin{aligned} \widetilde{V}_{1}^{\prime }(\phi ^{A_1}(\mathbf{s}_{1});\phi ^{A_1}(\mathbf{s} _{1}))-\widetilde{\xi }_{1}^{\prime }(\phi ^{A_1}(\mathbf{s}_{1}))\ge \widetilde{V}_{1}^{\prime }(\phi ^{A_1}(\mathbf{s}_{1});\phi ^{A_1}(\mathbf{t} _{1}))-\widetilde{\xi }_{1}^{\prime }(\phi ^{A_1}(\mathbf{t}_{1})). \end{aligned}$$

which is the incentive compatibility constraint for player \(1\) under mechanism \(\eta ^{\prime }.\) \(\square \)

Lemma 3

The mechanisms \(\eta \) and \(\eta ^{\prime }\) are revenue-equivalent.

Proof

The expected revenue for the seller under mechanism \(\eta \) is

$$\begin{aligned} ER(\eta )&= \int \sum _{k}\xi _{k}(\mathbf{s})f(\mathbf{s})d\mathbf{s} \\&= \sum _{k}\int \xi _{k}(\mathbf{s})\prod f_{i}(\mathbf{s}_{i})d\mathbf{s}_{i} \\&= \sum _{k}\int _{{}}f_{-1}(\mathbf{s}_{-1})\int f_{\phi ^{A_1}}(\alpha )\int \xi _{k}(\mathbf{s}_{1},\mathbf{s}_{-1})f_{1}(\mathbf{s}_{1}|\phi ^{A_1} (\mathbf{s}_{1})=\alpha )d\mathbf{s}_{1}d\alpha d\mathbf{s}_{-1}. \\&= \sum _{k} \int \int \xi _{k}^{\prime }(\alpha ,\mathbf{s}_{-i})f_{-1}(\mathbf{s}_{-1})f_{\phi ^{A_1}}(\alpha )d\alpha d\mathbf{s}_{-1} \\&= ER(\eta ^{\prime }) \end{aligned}$$

\(\square \)

Proof of Theorem 1

Follows from the above three lemmas. \(\square \)

1.2 Proof of Theorem  2

1.2.1 Notation

For notational convenience, we consider the case where buyer \(1\) and \(2\)’s information is centralized under the control of a new buyer \(c\). Let

$$\begin{aligned} \mathbf{A}=\left\{ A_{1},A_{2},A_{3},\ldots ,A_{m}\right\} \end{aligned}$$

and

$$\begin{aligned} \mathbf{A}^{\prime }=\left\{ A_{c},A_{3}^{\prime },\ldots ,A_{m}^{\prime }\right\} \end{aligned}$$

where \(A_{c}=A_{1}\cup A_{2}\) and \(A_{i}=A_{i}^{\prime }\) for all \(i\ge 3\). All the other cases can be derived from this analysis. For simplicity, we drop the superscript in \(\phi ^{A_c}(X_1,X_2)\) and denote the sufficient statistic by \(\phi (X_{1},X_{2})\).

For every \(t\) in the support of \(\phi (X_{1},X_{2})\) define:

$$\begin{aligned} \underline{x}_{1}(t)=\inf \left\{ \left. x_{1}\right| \exists x_{2}\in [\underline{z}_{2},\overline{z}_{2}],\phi (x_{1},x_{2})=t\right\} \end{aligned}$$
(12)

and

$$\begin{aligned} \overline{x}_{1}(t)=\sup \left\{ \left. x_{1}\right| \exists x_{2}\in [\underline{z}_{2},\overline{z}_{2}],\phi (x_{1},x_{2})=t\right\} , \end{aligned}$$
(13)

analogously define \(\underline{x}_{2}(t)\) and \(\overline{x}_{2}(t).\) Note that these objects are well-defined and increasing when \(\phi (\cdot ,\cdot )\) is increasing.

Define implicitly for every \(t, \psi _{2}(\cdot ,t):[\underline{x}_{1}(t), \overline{x}_{1}(t)]\rightarrow [\underline{x}_{2}(t),\overline{x} _{2}(t)]\)

$$\begin{aligned} \phi (x_{1},\psi _{2}(x_{1},t))=t \end{aligned}$$

and \(\psi _{1}(\cdot ,t):[\underline{x}_{2}(t),\overline{x} _{2}(t)]\rightarrow [\underline{x}_{1}(t),\overline{x}_{1}(t)]\)

$$\begin{aligned} \phi (\psi _{1}(x_{2},t),x_{2})=t. \end{aligned}$$

Note that \(\psi _{1}(\cdot ,t)\) and \(\psi _{2}(\cdot ,t)\) are well-defined decreasing functions and \(\psi _{1}^{-1}(\cdot ,t)=\psi _{2}(\cdot ,t)\). Further, when \(\phi \) is differentiable then so are \(\psi \) and \(\psi _{2},\) and

$$\begin{aligned} \frac{d}{dx_1}\phi (x_1,\psi _{2}(x_1,t))=0\Leftrightarrow \partial _{1}\phi (x_1,\psi _{2}(x_1,t))=-\partial _{2}\phi (x_1,\psi _{2}(x_1,t))\partial _{x_1}\psi _{2}(x_1,t) \end{aligned}$$

or

$$\begin{aligned} \partial _{x_1}\psi _{2}(x_1,t)=-\frac{\partial _{1}\phi (x_1,\psi _{2}(x_1,t))}{\partial _{2}\phi (x_1,\psi _{2}(x_1,t))} \end{aligned}$$

and analogously

$$\begin{aligned} \partial _{x_2}\psi _{1}(x_2,t)=-\frac{\partial _{2}\phi (\psi _{1}(x_2,t),x_2)}{\partial _{1}\phi (\psi _{1}(x_2,t),x_2)}. \end{aligned}$$

Note that if \(\phi (x_{1},x_{2})=t\)

$$\begin{aligned} V^{\mathbf{A}^{\prime }}(t,t_{-12})=V^{\mathbf{A}}(x_{1},\psi _{2}(x_{1},t),t_{-12}) \end{aligned}$$
(14)

and therefore

$$\begin{aligned} \partial _{t}V^{\mathbf{A}^{\prime }}(t,t_{-12})&= \partial _{2}V^\mathbf{A }(x_{1},\psi _{2}(x_{1},t),t_{-12})\partial _{t}\psi _{2}(x_{1},t)\nonumber \\&= \frac{\partial _{2}V^{\mathbf{A}}(x_{1},\psi _{2}(x_{1},t),t_{-12})}{\partial _{2}\phi \left( x_{1},\psi _{2}(x_{1},t)\right) }. \end{aligned}$$
(15)

By a similar argument one can show that

$$\begin{aligned} \partial _{t}V^{\mathbf{A}^{\prime }}(t,t_{-12})=\frac{\partial _{1}V^{\mathbf{A}}(\psi _{1}(x_{2},t),x_{2},t_{-12})}{\partial _{1}\phi \left( \psi _{1}(x_{2},t),x_{2}\right) }. \end{aligned}$$

and for all \(j\ge 3\)

$$\begin{aligned} \partial _{tj}V^{\mathbf{A}^{\prime }}(t,t_{-1})=\frac{\partial _{1j}V^{ \mathbf{A}}(\psi _{1}(x_{2},t),x_{2},t_{-12})}{\partial _{1}\phi \left( \psi _{1}(x_{2},t),x_{2}\right) }, \end{aligned}$$

which means that \(\partial _{tj}V^{\mathbf{A}^{\prime }}\) and \(\partial _{1j}V^{\mathbf{A}}\) will have the same sign.

Lemma 4

The survival function and density function of \(\phi (X_{1},X_{2})\) are given by

$$\begin{aligned} \overline{F}_{\phi }(t)&= \int \limits _{-\infty }^{\infty }f_{1}(x)\overline{F} _{2}(\psi _{2}(x,t))dx =\int \limits _{-\infty }^{\infty }f_{2}(x)\overline{F} _{1}(\psi _{1}(x,t))dx , \text{ and }\end{aligned}$$
(16)
$$\begin{aligned} f_{\phi }(t)&= \int \limits _{-\infty }^{\infty }\frac{f_{1}(x)f_{2}(\psi _{2}(x,t))}{\partial _{2}\phi (x,\psi _{2}(x,t))}dx =\int \limits _{-\infty }^{\infty }\frac{ f_{2}(x)f_{1}(\psi _{1}(x,t))}{\partial _{1}\phi (\psi _{1}(x,t),x)}dx. \end{aligned}$$
(17)

Proof

Note that

$$\begin{aligned} \Pr \left[ \phi (X_{1},X_{2})\ge t\right] =\overline{F}_{\phi }(t)=\int \Pr \left[ \phi (X_{1},X_{2})\ge t|X_{1}=x\right] f_{1}(x)dx. \end{aligned}$$

Since \(X_{1}\) and \(X_{2}\) are independent, we have

$$\begin{aligned} \Pr \left[ \phi (X_{1},X_{2})\ge t|X_{1}=x\right] =\Pr \left[ X_{2}\ge \psi _{2}(x,t)|X_{1}=x\right] =\overline{F}_{2}(\psi _{2}(x,t)). \end{aligned}$$

Substituting back into the integral yields the first expression. Note that

$$\begin{aligned} \frac{d}{dt}\phi (x,\psi _{2}(x,t))=1\Leftrightarrow \partial _{2}\phi (x,\psi _{2}(x,t))\partial _{t}\psi _{2}(x,t)=1 \end{aligned}$$

or

$$\begin{aligned} \partial _{t}\psi _{2}(x,t)=\frac{1}{\partial _{2}\phi (x,\psi _{2}(x,t))}. \end{aligned}$$
(18)

Then,

$$\begin{aligned} f_{\phi }(t)&= -\partial _t \overline{F}_{\phi }(t) \\&= \int \limits _{-\infty }^{\infty }f_{1}(x)f_{2}(\psi _{2}(x,t))\partial _{t}\psi _{2}(x,t)dx \end{aligned}$$

Substituting Eq. (18) yields:

$$\begin{aligned} =\int \limits _{-\infty }^{\infty }\frac{f_{1}(x)f_{2}(\psi _{2}(x,t))}{\partial _{2}\phi (x,\psi _{2}(x,t))}dx \end{aligned}$$

\(\square \)

Proof of Theorem 2

Under our assumptions, every buyer’s information can be summarized by \(T_{i} =\phi ^{A_{i}}(\mathbf{S}_{i})\) and in any scalar mechanism for information profile \(\mathbf{A}\) only reports \(t_{i}\) are required from buyers. In the concentrated environment \(\mathbf{A}^{\prime }\), a scalar mechanism will require reports \(t_{i} =T_{i}\) from buyers \(3\) through \(m\), while it will ask buyer \(c\) to submit a report \(t_{c}=\phi (t_{1},t_{2}).\) Denote by \( f_{i}(t_{i}),F_{i}(t_{i})\) and \([\underline{a}_{i},\overline{a}_{i}]\) the density, distribution function and, respectively, support of the random variables \(T_{i}.\) Further, denote by \(f_{\phi }\) and \(F_{\phi }\) the density and distribution function of the random variable \(\phi (T_{1},T_{2}). \) Denote by \(t_{-i}\) and \(t_{-ij}\) the vector of reports excluding buyer \(i\) or buyers \(i\) and \(j\).

Consider the virtual valuation of player \(c\),

$$\begin{aligned} H_{c}^{\mathbf{A}^{\prime }}(t_{c},t_{-12})=V^{\mathbf{A}^{\prime }}(t_{c},t_{-12})-\frac{\overline{F}_{\phi }(t_{c})}{f_{\phi }(t_{c})} \partial _{t_{c}}V^{\mathbf{A}^{\prime }}(t_{c},t_{-12}). \end{aligned}$$

Under the regularity assumption, \(H_{c}^{\mathbf{A}^{\prime }}(\cdot ,t_{-12}) \) is non-decreasing.

Following (Bulow and Klemperer 1996), for any mechanism \(\eta ^{\prime }\!=\!\left( p_{i}^{\prime },\xi _{i}^{\prime }\right) _{i\in \{c,3,\ldots ,m\}}\) in environment \(\mathbf{A}^{\prime },\) the seller’s revenue is

$$\begin{aligned} R(\eta ^{\prime })&= \int \left( \sum _{i\ge 3}p_{i}^{\prime }(t_{i},t_{-i})H_{i}^{\mathbf{A}^{\prime }}(t_{i},t_{-i})+p_{c}^{\prime }(t_{c},t_{-12})H_{c}^{\mathbf{A}^{\prime }}(t_{c},t_{-12})+p_{0}^{\prime }v_{0}\right) \nonumber \\&\times f_{\phi }(t_{c})f(t_{-12})dt_{c}dt_{-12}, \end{aligned}$$

where \(v_{0}\) is the seller’s reservation value. Point-by-point maximization of the integrand yields the optimal solution \(\mu ^{\mathbf{A}^{\prime }}\) where

$$\begin{aligned} p_{i}^{\prime }(t_{i},t_{-i})=1\Leftrightarrow H_{i}^{\mathbf{A}^{\prime }}(t_{i},t_{-i})\ge \underset{j\ne i}{\max }(v_{0},H_{c}^{\mathbf{A} ^{\prime }}(t_{c},t_{-12}),H_{j}^{\mathbf{A}^{\prime }}(t_{j},t_{-j})) \end{aligned}$$

and zero otherwise. Since the functions \(H_{i}^{\mathbf{A}^{\prime }}\) are non-decreasing, \(H_{i}^{\mathbf{A}^{\prime }}(t_{i},t_{-i})\ge v_{0}\) implies \( H_{i}^{\mathbf{A}^{\prime }}(t_{i}^{\prime },t_{-i})\ge v_{0}\) for all \( t_{i}^{\prime }\ge t_{i}.\) Further, for all \(j\), and for all \(t_{i}^{\prime }\ge t_{i}\), by Assumption \(1\) we have \(H_{i}^{\mathbf{A}^{\prime }}(t_{i}^{\prime },t_{-i})\ge H_{j}^{\mathbf{A}^{\prime }}(t_{i}^{\prime },t_{-i}).\) In particular, for bidder \(c\) we have

$$\begin{aligned} p_{c}^{\prime }(t_{c},t_{-12})=1\Leftrightarrow H_{c}^{\mathbf{A}^{\prime }}(t_{c},t_{-12})\ge \underset{i}{\max }(v_{0},H_{i}^{\mathbf{A}^{\prime }}(t_{i},t_{-i})) \end{aligned}$$

and zero otherwise. We conclude thus that for any \(t_{-12}\) and \(v_{0}\), the set of types for which bidder \(c\) gets the object is given by

$$\begin{aligned} M_{c}=\left\{ (t_{1},t_{2})|\phi (t_{1},t_{2})=t_{c}\ge \tau (t_{-12},v_{0})\right\} . \end{aligned}$$

for some function, \(\tau \). The expected payment received by the auctioneer from bidder \(c\) is therefore,

$$\begin{aligned} \xi _{c}^{\mathbf{A}^{^{\prime }}}=\int \left( \,\,\, \int \limits _{t_{c}>\tau (t_{-12},v_{0})}H_{c}^{\mathbf{A}^{\prime }}(t_{c},t_{-12})f_{\phi }(t_{c})dt_{c}\right) f(t_{-12})dt_{-12}. \end{aligned}$$

Define

$$\begin{aligned} Q^{\prime }(t)=\int \limits _{t_{c}>t}H_{c}^{\mathbf{A}^{\prime }}(t_{c},t_{-12})f_{\phi }(t_{c})dt_{c}, \end{aligned}$$

then

$$\begin{aligned} \xi _{c}^{\mathbf{A}^{^{\prime }}}=\int Q^{\prime }(\tau (t_{-12},v_{0}))f(t_{-12})dt_{-12}. \end{aligned}$$

Consider a mechanism \(\mu ^{\mathbf{A}}=\left( p_{i},\xi _{i}\right) _{i\in \{1,2,\ldots ,m\}}\) for the environment \(\mathbf{A}\), with the following properties \(p_{1}(t_{1},t_{-1})\equiv 0,p_{2}(t_{1},t_{2},t_{-12})\equiv p_{c}^{\prime }(\phi \left( t_{1},t_{2}\right) ,t_{-12})\) and \( p_{i}(t_{i},t_{-i})\equiv p_{i}^{\prime }(t_{i},t_{-i})\) for all \(i\ge 3.\) The mechanism \(\mu ^{\mathbf{A}}\) is incentive compatible since all the functions are non-decreasing in own type.Footnote 7 Furthermore, the expected payment received from bidders \(3\) through \(n\) ,under \(\mu ^{\mathbf{A}}\) and \(\mu ^{\mathbf{A} ^{\prime }}\)are the same\(.\)

The expected payment from bidder \(2\) in this case is therefore

$$\begin{aligned} \xi _{2}^{\mathbf{A}}=\int \left( \int \int \limits _{M_{c}}H_{2}^{\mathbf{A} }(t_{1},t_{2},t_{-12})f_{1}(t_{1})f_{2}(t_{2})dt_{1}dt_{2}\right) f(t_{-12})dt_{-12}. \end{aligned}$$

Define

$$\begin{aligned} Q(t)=\underset{\phi (t_{1},t_{2})\ge t}{\int \int }H_{2}^{\mathbf{A} }(t_{1},t_{2},t_{-12})f_{1}(t_{1})f_{2}(t_{2})dt_{1}dt_{2}, \end{aligned}$$

then

$$\begin{aligned} \xi _{2}^{\mathbf{A}}=\int \left( Q(\tau (t_{-12},v_{0}))\right) f(t_{-12})dt_{-12}. \end{aligned}$$

In particular, we will show that for all \(t\)

$$\begin{aligned} Q^{\prime }(t)=Q(t) \end{aligned}$$

the expected payments of bidder \(c\) under \(\mu ^{\mathbf{A}^{\prime }}\) and those of bidder \(2\) under \(\mu ^{\mathbf{A}}\) coincide, which makes the two mechanisms revenue-equivalent. Define

$$\begin{aligned} \underline{t}_{1}(t)=\inf \left\{ \left. t_{1}\right| \exists t_{2},\phi (t_{1},t_{2})=t\right\} \text{ and } \overline{t}_{1}(t)=\sup \left\{ \left. t_{1}\right| \exists t_{2},\phi (t_{1},t_{2})=t\right\} , \end{aligned}$$
(19)

and note that \(Q(t)\) may be expressed as

$$\begin{aligned} Q(t)=\underset{\phi (t_{1},t_{2})\ge t}{\int \int }\left( V^{\mathbf{A}}(t_{1},t_{2},t_{-12})-\frac{\overline{F}_{2}(t_{2})}{f_{2}(t_{2})}\partial _{2}V^{\mathbf{A}}(t_{1},t_{2},t_{-12})\right) f_{1}(t_{1})f_{2}(t_{2})dt_{1}dt_{2} \nonumber \\ \end{aligned}$$
(20)

We consider each component separately. First,

$$\begin{aligned}&\underset{\phi (t_{1},t_{2})\ge t}{\int \int }V^{\mathbf{A} }(t_{1},t_{2},t_{-12})f_{1}(t_{1})f_{2}(t_{2})dt_{1}dt_{2}\nonumber \\&\qquad =\int \limits _{\underline{t }_{1}(t)}^{\overline{t}_{1}(t)}\int \limits _{t_{2}\ge \psi _{2}(t_{1},t)}V^\mathbf{ A }(t_{1},t_{2},t_{-12})f_{1}(t_{1})f_{2}(t_{2})dt_{2}dt_{1} \end{aligned}$$

Fix \(t_{1}\) and introduce the change in variable \(t_{2}=\psi _{2}(t_{1},t_{c}),\)observing that \(dt_{2}=\partial _{t_{c}}\psi _{2}(t_{1},t_{c})dt_{c}.\)

The integral becomes

$$\begin{aligned}&\int \limits _{\underline{t}_{1}(t)}^{\overline{t}_{1}(t)}\int \limits _{t_{c}\ge t}V^{\mathbf{A}}(t_{1},\psi _{2}(t_{1},t_{c}),t_{-12})f_{1}(t_{1})f_{2}(\psi _{2}(t_{1},t_{c}))\partial _{t_{c}}\psi _{2}(t_{1},t_{c})dt_{c}dt_{1} \\&= \int \limits _{\underline{t}_{1}(t)}^{\overline{t}_{1}(t)}\int \limits _{t_{c}\ge t}\frac{ V^{\mathbf{A}}(t_{1},\psi _{2}(t_{1},t_{c}),t_{-12})f_{1}(t_{1})f_{2}(\psi _{2}(t_{1},t_{c}))}{\partial _{2}\phi (t_{1},\psi _{2}(t_{1},t_{c}))} dt_{c}dt_{1} \\&= \int \limits _{t_{c}\ge t}\int \limits _{\underline{t}_{1}(t)}^{\overline{t}_{1}(t)}\frac{ V^{\mathbf{A}^{\prime }}(t_{c},t_{-12})f_{1}(t_{1})f_{2}(\psi _{2}(t_{1},t_{c}))}{\partial _{2}\phi (t_{1},\psi _{2}(t_{1},t_{c}))} dt_{1}dt_{c} \\&= \int \limits _{t_{c}\ge t}V^{\mathbf{A}^{\prime }}(t_{c},t_{-12})\int \limits _{\underline{ t}_{1}(t)}^{\overline{t}_{1}(t)}\frac{f_{1}(t_{1})f_{2}(\psi _{2}(t_{1},t_{c}))}{\partial _{2}\phi (t_{1},\psi _{2}(t_{1},t_{c}))} dt_{1}dt_{c} \\&= \int \limits _{t_{c}\ge t}V^{\mathbf{A}^{\prime }}(t_{c},t_{-12})f_{\phi }(t)dt_{c}. \end{aligned}$$

Where the first equality follows from Eq. (18), the second from (14) and Fubini’s theorem, and the last by Lemma 4.

The second part of the integral in (20) is

$$\begin{aligned}&-\underset{\phi (t_{1},t_{2})\ge t}{\int \int }\left( \frac{ \overline{F}_{2}(t_{2})}{f_{2}(t_{2})}\partial _{2}V^{\mathbf{A} }(t_{1},t_{2},t_{-12})\right) f_{1}(t_{1})f_{2}(t_{2})dt_{1}dt_{2} \\&= -\underset{\phi (t_{1},t_{2})\ge t}{\int \int }f_{1}(t_{1})\partial _{2}V^{\mathbf{A}}(t_{1},t_{2},t_{-12})\overline{F}_{2}(t_{2})dt_{1}dt_{2} \\&= -\int \limits _{\underline{t}_{1}(t)}^{\overline{t}_{1}(t)}\int \limits _{t_{2}\ge \psi _{2}(t_{1},t)}f_{1}(t_{1})\partial _{2}V^{\mathbf{A}}(t_{1},t_{2},t_{-12}) \overline{F}_{2}(t_{2})dt_{2}dt_{1} \\&= -\int \limits _{\underline{t}_{1}(t)}^{\overline{t}_{1}(t)}\int \limits _{t_{c}\ge t}f_{1}(t_{1})\partial _{2}V^{\mathbf{A}}(t_{1},\psi _{2}(t_{1},t_{c}),t_{-12})\overline{F}_{2}(\psi _{2}(t_{1},t_{c}))\partial _{t_{c}}\psi _{2}(t_{1},t_{c})dt_{c}dt_{1} \\&= -\int \limits _{\underline{t}_{1}(t)}^{\overline{t}_{1}(t)}\int \limits _{t_{c}\ge t}\frac{ \partial _{2}V^{\mathbf{A}}(t_{1},\psi _{2}(t_{1},t_{c}),t_{-12})}{\partial _{2}\phi (t_{1},\psi _{2}(t_{1},t_{c}))}f_{1}(t_{1})\overline{F}_{2}(\psi _{2}(t_{1},t_{c}))dt_{c}dt_{1} \\&= -\int \limits _{t_{c}\ge t}\int \limits _{\underline{t}_{1}(t)}^{\overline{t} _{1}(t)}\partial _{t_{c}}V^{\mathbf{A}^{\prime }}(t_{c},t_{-12})f_{1}(t_{1}) \overline{F}_{2}(\psi _{2}(t_{1},t_{c}))dt_{1}dt_{c} \\&= -\int \limits _{t_{c}\ge t}\partial _{t_{c}}V^{\mathbf{A}^{\prime }}(t_{c},t_{-12})\int \limits _{\underline{t}_{1}(t)}^{\overline{t} _{1}(t)}f_{1}(t_{1})\overline{F}_{2}(\psi _{2}(t_{1},t_{c}))dt_{1}dt_{c} \\&= -\int \limits _{t_{c}\ge t}\partial _{t_{c}}V^{\mathbf{A}^{\prime }}(t_{c},t_{-12})\overline{F}_{\phi }(t_{c})dt_{c} \end{aligned}$$

Combining the two results we have

$$\begin{aligned} Q(t)&= \int \limits _{t_{c}\ge t}\left( V^{\mathbf{A}^{\prime }}(t_{c},t_{-12})f_{\phi }(t_c)-\partial _{t_{c}}V^{\mathbf{A}^{\prime }}(t_{c},t_{-12})\overline{F}_{\phi }(t_{c})\right) dt_{c} \\&= \int \limits _{t_{c}\ge t}\left( V^{\mathbf{A}^{\prime }}(t_{c},t_{-12})-\frac{ \overline{F}_{\phi }(t_{c})}{f_{\phi }(t_c)}\partial _{t_{c}}V^{\mathbf{A} ^{\prime }}(t_{c},t_{-12})\right) f_{\phi }(t_{c})dt_{c} \\&= \int \limits _{t_{c}>t}H_{c}^{\mathbf{A}^{\prime }}(t_{c},t_{-12})f_{\phi }(t_{c})dt_{c} \\&= Q^{\prime }(t) \end{aligned}$$

which means that \(\mu ^{\mathbf{A}}\) and \(\mu ^{\mathbf{A}^{\prime }}\) generate the same expected revenue. However, under \(\mu ^{\mathbf{A}}\), buyer \(1\) receives the good with probability zero. If the optimal mechanism in environment \(\mathbf{A}\) allocates to buyer \(1\) with strictly positive probability, then it is, by definition, revenue superior to \(\mu ^{\mathbf{A} }\) and hence to \(\mu ^{\mathbf{A}^{\prime }}\). \(\square \)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mares, V., Shor, M. Information concentration in common value environments. Rev Econ Design 17, 183–203 (2013). https://doi.org/10.1007/s10058-013-0143-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10058-013-0143-0

Keywords

JEL Classification

Navigation