Skip to main content

Advertisement

Log in

Discussing the final size and shape of the reconstructed tissues in tissue engineering

  • Review Paper
  • Tissue Engineering / Regenerative Medicine
  • Published:
Journal of Artificial Organs Aims and scope Submit manuscript

Abstract

Tissue engineering (TE) has made a revolution in repairing, replacing, or regenerating tissues or organs, but it has still a long way ahead. The mechanical properties along with suitable physicochemical and biological characteristics are the initial criteria for scaffolds in TE that should be fulfilled. This research will provide another point of view toward TE challenges concerning the morphological and geometrical aspects of the reconstructed tissue and which parameters may affect it. Based on our survey, there is a high possibility that the final reconstructed tissue may be different in size and shape compared to the original design scaffold. Thereby, the 3D-printed scaffold might not guarantee an accurate tissue reconstruction. The main justification for this is the unpredicted behavior of cells, specifically in the outer layer of the scaffold. It can also be a concern when the scaffold is implanted while cell migration cannot be controlled through the in vivo signaling pathways, which might cause cancer challenges. To sum up, it is concluded that more studies are necessary to focus on the size and geometry of the final reconstructed tissue.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. McClelland R, et al. 7—tissue engineering. In: Enderle JD, Blanchard SM, Bronzino JD, editors., et al., Introduction to biomedical engineering. 2nd ed. Boston: Academic Press; 2005. p. 313–402.

    Chapter  Google Scholar 

  2. Ramos T, Moroni L. Tissue engineering and regenerative medicine 2019: the role of biofabrication—a year in review. Tissue Eng Part C Methods. 2019;26:91–106.

    Article  Google Scholar 

  3. Sun AR, et al. Cartilage tissue engineering for obesity-induced osteoarthritis: physiology, challenges, and future prospects. J Orthopaed Transl. 2020. https://doi.org/10.1016/j.jot.2020.07.004.

    Article  Google Scholar 

  4. Dzobo K, et al. Advances in regenerative medicine and tissue engineering: innovation and transformation of medicine. Stem Cells Int. 2018;2018:1–24.

    Article  Google Scholar 

  5. Edgar L, et al. Heterogeneity of scaffold biomaterials in tissue engineering. Materials. 2016;9:332.

    Article  PubMed  PubMed Central  Google Scholar 

  6. Ma PX. Scaffolds for tissue fabrication. Mater Today. 2004;7:30–40.

    Article  CAS  Google Scholar 

  7. Vacanti JP, Vacanti CA. Chapter 1—the history and scope of tissue engineering. In: Lanza R, Langer R, Vacanti J, editors. Principles of tissue engineering. 4th ed. Boston: Academic Press; 2014. p. 3–8.

    Chapter  Google Scholar 

  8. Esmaeili J, et al. Integration of microbubbles with biomaterials in tissue engineering for pharmaceutical purposes. Heliyon. 2020;6:e04189.

    Article  PubMed  PubMed Central  Google Scholar 

  9. Biswal T. Biopolymers for tissue engineering applications: a review. Mater Today Proc. 2021;41:397–402.

  10. Song HHG, et al. Vascular tissue engineering: progress, challenges, and clinical promise. Cell Stem Cell. 2018;22:340–54.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Swift MR, Weinstein BM. Arterial–venous specification during development. Circ Res. 2009;104:576–88.

    Article  CAS  PubMed  Google Scholar 

  12. Tatara AM, Kontoyiannis DP, Mikos AG. Drug delivery and tissue engineering to promote wound healing in the immunocompromised host: current challenges and future directions. Adv Drug Deliv Rev. 2018;129:319–29.

    Article  CAS  PubMed  Google Scholar 

  13. Tabata Y. Biomaterial technology for tissue engineering applications. J R Soc Interface. 2009;6:S311–24.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Eltom A, Zhong G, Muhammad A. Scaffold techniques and designs in tissue engineering functions and purposes: a review. Adv Mater Sci Eng. 2019;2019:3429527.

    Article  Google Scholar 

  15. Ikada Y. Challenges in tissue engineering. J R Soc Interface. 2006;3:589–601.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Hellman KB. Challenges in tissue engineering and regenerative medicine product commercialization: building an industry. Tissue Eng Part A. 2011;17:1–3.

    Article  PubMed  Google Scholar 

  17. Rekow D. Informatics challenges in tissue engineering and biomaterials. Adv Dent Res. 2003;17:49–54.

    Article  CAS  PubMed  Google Scholar 

  18. Cobham AE, Mirth CK. The development of body and organ shape. BMC Zool. 2020;5:14.

    Article  Google Scholar 

  19. Thorne CH, Wilkes G. Ear deformities, otoplasty, and ear reconstruction. Plast Reconstr Surg. 2012;129:701e-e716.

    Article  CAS  PubMed  Google Scholar 

  20. Siemionow M, Sonmez E. Face as an organ. Ann Plast Surg. 2008;61:345–52.

    Article  CAS  PubMed  Google Scholar 

  21. Deo KA, et al. Bioprinting 101: design, fabrication, and evaluation of cell-laden 3D bioprinted scaffolds. Tissue Eng Part A. 2020;26:318–38.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Matai I, et al. Progress in 3D bioprinting technology for tissue/organ regenerative engineering. Biomaterials. 2020;226: 119536.

    Article  CAS  PubMed  Google Scholar 

  23. Rezaei FS, et al. 3D printed chitosan/polycaprolactone scaffold for lung tissue engineering: hope to be useful for COVID-19 studies. RSC Adv. 2021;11:19508–20.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Ramiah P, et al. Hydrogel-based bioinks for 3D bioprinting in tissue regeneration. Front Mater. 2020. https://doi.org/10.3389/fmats.2020.00076.

    Article  Google Scholar 

  25. Bian L. Functional hydrogel bioink, a key challenge of 3D cellular bioprinting. APL Bioeng. 2020;4: 030401.

    Article  PubMed  PubMed Central  Google Scholar 

  26. Fang Q, et al. In vitro and in vivo research on using Antheraea pernyi silk fibroin as tissue engineering tendon scaffolds. Mater Sci Eng C. 2009;29:1527–34.

    Article  CAS  Google Scholar 

  27. Cervantes T, et al. Design of composite scaffolds and three-dimensional shape analysis for tissue-engineered ear. J R Soc Interface R Soc. 2013;10:20130413.

    Article  Google Scholar 

  28. Mouriño V, et al. Enhancing biological activity of bioactive glass scaffolds by inorganic ion delivery for bone tissue engineering. Curr Opin Biomed Eng. 2019;10:23–34.

    Article  Google Scholar 

  29. Gurumurthy B, Janorkar AV. Improvements In mechanical properties of collagen-based scaffolds for tissue engineering. Curr Opin Biomed Eng. 2020;17:100253.

    Article  Google Scholar 

  30. Persson M, et al. Osteogenic differentiation of human mesenchymal stem cells in a 3D woven scaffold. Sci Rep. 2018;8:10457–10457.

    Article  PubMed  PubMed Central  Google Scholar 

  31. Dhivya S, et al. Proliferation and differentiation of mesenchymal stem cells on scaffolds containing chitosan, calcium polyphosphate and pigeonite for bone tissue engineering. Cell Prolif. 2018;51: e12408.

    Article  PubMed  Google Scholar 

  32. Wolpert L. One hundred years of positional information. Trends Genet. 1996;12:359–64.

    Article  CAS  PubMed  Google Scholar 

  33. Pina S, et al. Scaffolding strategies for tissue engineering and regenerative medicine applications. Materials. 2019;12:1824.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Deng Y, et al. Bioinspired and osteopromotive polydopamine nanoparticle-incorporated fibrous membranes for robust bone regeneration. NPG Asia Mater. 2019;11:39.

    Article  CAS  Google Scholar 

  35. Wu Z, Guan K-L. Hippo signaling in embryogenesis and development. Trends Biochem Sci. 2021;46:51–63.

    Article  CAS  PubMed  Google Scholar 

  36. Aihara A, et al. Small molecule LATS kinase inhibitors block the Hippo signaling pathway and promote cell growth under 3D culture conditions. J Biol Chem. 2022;298:101779.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Burrill DR, Silver PA. Making cellular memories. Cell. 2010;140:13–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Levin M. The biophysics of regenerative repair suggests new perspectives on biological causation. BioEssays. 2020;42:1900146.

    Article  Google Scholar 

  39. Mekler L. Mechanism of biological memory. Nature. 1967;215:481–4.

    Article  CAS  PubMed  Google Scholar 

  40. Dudas M, et al. Memory encoded throughout our bodies: molecular and cellular basis of tissue regeneration. Pediatr Res. 2008;63:502–12.

    Article  PubMed  Google Scholar 

  41. Li J, Chen J, Kirsner R. Pathophysiology of acute wound healing. Clin Dermatol. 2007;25:9–18.

    Article  CAS  PubMed  Google Scholar 

  42. Pavlovic M, Mayfield J, Balint B. Tissue engineering triangle and its development. In: Handbook of medical and healthcare technologies. New York: Springer; 2013. p. 267–82.

    Chapter  Google Scholar 

  43. Stadelmann WK, Digenis AG, Tobin GR. Physiology and healing dynamics of chronic cutaneous wounds. Am J Surg. 1998;176:26S-38S.

    Article  CAS  PubMed  Google Scholar 

  44. Kusuhara H, et al. Tissue engineering a model for the human ear: assessment of size, shape, morphology, and gene expression following seeding of different chondrocytes. Wound Repair Regen. 2009;17:136–46.

    Article  PubMed  Google Scholar 

  45. Hassanzadeh P, Atyabi F, Dinarvand R. Tissue engineering: still facing a long way ahead. J Control Release. 2018;279:181–97.

    Article  CAS  PubMed  Google Scholar 

  46. Jia L, et al. Regeneration of human-ear-shaped cartilage with acellular cartilage matrix-based biomimetic scaffolds. Appl Mater Today. 2020;20: 100639.

    Article  Google Scholar 

  47. Lin D, et al. A viscoelastic PEGylated poly(glycerol sebacate)-based bilayer scaffold for cartilage regeneration in full-thickness osteochondral defect. Biomaterials. 2020;253: 120095.

    Article  CAS  PubMed  Google Scholar 

  48. Buenzli PR, et al. Cell proliferation and migration explain pore bridging dynamics in 3D printed scaffolds of different pore size. Acta Biomater. 2020;114:285–95.

    Article  CAS  PubMed  Google Scholar 

  49. Calleros EL, et al. Crosslinked, biodegradable polyurethanes for precision-porous biomaterials: synthesis and properties. J Appl Polym Sci. 2020;137:48943.

    Article  CAS  Google Scholar 

  50. Chian KS et al. Three-dimensional porous hybrid scaffold and manufacture thereof. 2010, Google Patents.

  51. Bružauskaitė I, et al. Scaffolds and cells for tissue regeneration: different scaffold pore sizes-different cell effects. Cytotechnology. 2016;68:355–69.

    Article  PubMed  Google Scholar 

  52. Khoshnood N, Zamanian A. A comprehensive review on scaffold-free bioinks for bioprinting. Bioprinting. 2020;19: e00088.

    Article  Google Scholar 

  53. Wang J-Z, et al. Review fantastic medical implications of 3D-printing in liver surgeries, liver regeneration, liver transplantation and drug hepatotoxicity testing: a review. Int J Surg. 2018;56:1–6.

    Article  PubMed  Google Scholar 

  54. Mabrouk M, Beherei HH, Das DB. Recent progress in the fabrication techniques of 3D scaffolds for tissue engineering. Mater Sci Eng C. 2020;110: 110716.

    Article  CAS  Google Scholar 

  55. Urciuolo A, et al. Intravital three-dimensional bioprinting. Nat Biomed Eng. 2020;4:901–15.

    Article  CAS  PubMed  Google Scholar 

  56. Kim G, et al. A cryogenic direct-plotting system for fabrication of 3D collagen scaffolds for tissue engineering. J Mater Chem. 2009;19:8817–23.

    Article  CAS  Google Scholar 

  57. Mavila N, et al. Functional human and murine tissue-engineered liver is generated from adult stem/progenitor cells. Stem Cells Transl Med. 2017;6:238–48.

    Article  CAS  PubMed  Google Scholar 

  58. Gupta P, et al. A novel scaffold-based hybrid multicellular model for pancreatic ductal adenocarcinoma—toward a better mimicry of the in vivo tumor microenvironment. Front Bioeng Biotechnol. 2020. https://doi.org/10.3389/fbioe.2020.00290.

    Article  PubMed  PubMed Central  Google Scholar 

  59. Kenny A. Introduction: the early modern womb. In: Humoral wombs on the Shakespearean stage. New York: Springer; 2019. p. 1–26.

    Chapter  Google Scholar 

  60. Guariglia L, Rosati P. Embryo-fetal development in the early stages of pregnancy. Radiol Med. 1997;93:586–90.

    CAS  PubMed  Google Scholar 

  61. Murphy CM, et al. Cell-scaffold interactions in the bone tissue engineering triad. Eur Cell Mater. 2013;26:120–32.

    Article  CAS  PubMed  Google Scholar 

  62. Swanson WB, et al. Macropore design of tissue engineering scaffolds regulates mesenchymal stem cell differentiation fate. Biomaterials. 2021;272: 120769.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Godbey WT. Chapter 17—stem cells, tissue engineering, and regenerative medicine. In: Godbey WT, editor. Biotechnology and its applications. 2nd ed. New York: Academic Press; 2022. p. 389–409.

    Chapter  Google Scholar 

  64. Nantavisai S, et al. Mesenchymal stem cell-based bone tissue engineering for veterinary practice. Heliyon. 2019;5: e02808.

    Article  PubMed  PubMed Central  Google Scholar 

  65. Chen Y, et al. ECM scaffolds mimicking extracellular matrices of endochondral ossification for the regulation of mesenchymal stem cell differentiation. Acta Biomater. 2020;114:158–69.

    Article  CAS  PubMed  Google Scholar 

  66. Chandy T. Chapter 2—tissue repair with natural extracellular matrix (ECM) scaffolds. In: Sharma CP, editor. Regenerated organs. New York: Academic Press; 2021. p. 11–37.

    Chapter  Google Scholar 

  67. Agarwal T, Maiti TK, Ghosh SK. Decellularized caprine liver-derived biomimetic and pro-angiogenic scaffolds for liver tissue engineering. Mater Sci Eng C. 2019;98:939–48.

    Article  CAS  Google Scholar 

  68. Zheng M-H, et al. Liver tissue engineering: promises and prospects of new technology. Cytotherapy. 2010;12:349–60.

    Article  CAS  PubMed  Google Scholar 

  69. Safinsha S, Mubarak Ali M. Composite scaffolds in tissue engineering. Mater Today Proc. 2020;24:2318–29.

    Article  CAS  Google Scholar 

  70. Pittenger MF, et al. Multilineage potential of adult human mesenchymal stem cells. Science. 1999;284:143–7.

    Article  CAS  PubMed  Google Scholar 

  71. Willerth SM, Sakiyama-Elbert SE. Combining stem cells and biomaterial scaffolds for constructing tissues and cell delivery. Stem J. 2019;1:1–25.

    Google Scholar 

  72. Gu P, et al. Electrospun polysaccharide scaffolds: wound healing and stem cell differentiation. J Biomater Sci Polymer Ed. 2022;33:858–77.

    Article  CAS  Google Scholar 

  73. Chen W, et al. Three-dimensional printed electrospun fiber-based scaffold for cartilage regeneration. Mater Des. 2019;179: 107886.

    Article  CAS  Google Scholar 

  74. Fleckman P, et al. Cutaneous and inflammatory response to long-term percutaneous implants of sphere-templated porous/solid poly (HEMA) and silicone in mice. J Biomed Mater Res Part A. 2012;100:1256–68.

    Article  Google Scholar 

  75. Xiao X, et al. The promotion of angiogenesis induced by three-dimensional porous beta-tricalcium phosphate scaffold with different interconnection sizes via activation of PI3K/Akt pathways. Sci Rep. 2015;5:1–11.

    CAS  Google Scholar 

  76. Madden LR, et al. Proangiogenic scaffolds as functional templates for cardiac tissue engineering. Proc Natl Acad Sci. 2010;107:15211–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Hayashi K, Munar ML, Ishikawa K. Effects of macropore size in carbonate apatite honeycomb scaffolds on bone regeneration. Mater Sci Eng C. 2020;111: 110848.

    Article  CAS  Google Scholar 

  78. Leong MF, et al. Effect of electrospun poly (d, l-lactide) fibrous scaffold with nanoporous surface on attachment of porcine esophageal epithelial cells and protein adsorption. J Biomed Mater Res Part A. 2009;89:1040–8.

    Article  Google Scholar 

  79. Kaivosoja E, et al. Chemical and physical properties of regenerative medicine materials controlling stem cell fate. Ann Med. 2012;44:635–50.

    Article  CAS  PubMed  Google Scholar 

  80. Zhang Y, et al. The effects of pore architecture in silk fibroin scaffolds on the growth and differentiation of mesenchymal stem cells expressing BMP7. Acta Biomater. 2010;6:3021–8.

    Article  CAS  PubMed  Google Scholar 

  81. Osathanon T, et al. Microporous nanofibrous fibrin-based scaffolds for bone tissue engineering. Biomaterials. 2008;29:4091–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Xing F, et al. Regulation and directing stem cell fate by tissue engineering functional microenvironments: scaffold physical and chemical cues. Stem Cells Int. 2019;2019:2180925.

    Article  PubMed  PubMed Central  Google Scholar 

  83. Han Y, et al. Effect of pore size on cell behavior using melt electrowritten scaffolds. Front Bioeng Biotechnol. 2021. https://doi.org/10.3389/fbioe.2021.629270.

    Article  PubMed  PubMed Central  Google Scholar 

  84. Matsiko A, Gleeson JP, O’Brien FJ. Scaffold mean pore size influences mesenchymal stem cell chondrogenic differentiation and matrix deposition. Tissue Eng Part A. 2015;21:486–97.

    Article  CAS  PubMed  Google Scholar 

  85. Glaeser JD, et al. Modulation of matrix metalloprotease-2 levels by mechanical loading of three-dimensional mesenchymal stem cell constructs: impact on in vitro tube formation. Tissue Eng Part A. 2010;16:3139–48.

    Article  CAS  PubMed  Google Scholar 

  86. Rossello RA, Kohn DH. Cell communication and tissue engineering. Commun Integr Biol. 2010;3:53–6.

    Article  PubMed  PubMed Central  Google Scholar 

  87. Wang W, et al. The in vitro and in vivo biological effects and osteogenic activity of novel biodegradable porous Mg alloy scaffolds. Mater Des. 2020;189: 108514.

    Article  CAS  Google Scholar 

  88. Henning NFC, Jakus AE, Laronda MM. Building organs using tissue-specific microenvironments: perspectives from a bioprosthetic ovary. Trends Biotechnol. 2021;39:824–37.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Stoltz JF, et al. Organ reconstruction: dream or reality for the future. Biomed Mater Eng. 2017;28:S121–7.

    PubMed  Google Scholar 

  90. Gm C. Signaling molecules and their receptors. In: The cell: a molecular approach. Sunderland: Sinauer Associates; 2000.

    Google Scholar 

  91. Wu Y, et al. Low-intensity pulsed ultrasound regulates proliferation and differentiation of neural stem cells through notch signaling pathway. Biochem Biophys Res Commun. 2020;526:793–8.

    Article  CAS  PubMed  Google Scholar 

  92. Bonaldo P, Sandri M. Cellular and molecular mechanisms of muscle atrophy. Dis Model Mech. 2013;6:25–39.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Somaa FA, et al. Peptide-based scaffolds support human cortical progenitor graft integration to reduce atrophy and promote functional repair in a model of stroke. Cell Rep. 2017;20:1964–77.

    Article  CAS  PubMed  Google Scholar 

  94. Suderman R, Schauer A, Deeds EJ. Understanding the dynamics of scaffold-mediated signaling. bioRxiv. 2017;9:167205.

    Google Scholar 

  95. Vander Heiden MG, Cantley LC, Thompson CB. Understanding the Warburg effect: the metabolic requirements of cell proliferation. Science (New York, NY). 2009;324:1029–33.

    Article  Google Scholar 

  96. Zhu J, Thompson CB. Metabolic regulation of cell growth and proliferation. Nat Rev Mol Cell Biol. 2019;20:436–50.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Haschek WM, Rousseaux CG, Wallig MA. Chapter 11—kidney and lower urinary tract. In: Haschek WM, Rousseaux CG, Wallig MA, editors. Fundamentals of toxicologic pathology. 2nd ed. San Diego: Academic Press; 2010. p. 261–318.

    Chapter  Google Scholar 

  98. Meloche-Dumas L, Mercier F, Lacroix A. Role of unilateral adrenalectomy in bilateral adrenal hyperplasias with Cushing’s syndrome. Best Pract Res Clin Endocrinol Metab. 2021;35:101486.

    Article  PubMed  Google Scholar 

  99. Miyaoka Y, Miyajima A. To divide or not to divide: revisiting liver regeneration. Cell Div. 2013;8:8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Koong LJ, Ferrell CL. Effects of short term nutritional manipulation on organ size and fasting heat production. Eur J Clin Nutr. 1990;44:73–7.

    PubMed  Google Scholar 

  101. Rui L. Energy metabolism in the liver. Compr Physiol. 2014;4:177–97.

    Article  PubMed  PubMed Central  Google Scholar 

  102. Arigony ALV, et al. The influence of micronutrients in cell culture: a reflection on viability and genomic stability. Biomed Res Int. 2013;2013:597282–597282.

    Article  PubMed  PubMed Central  Google Scholar 

  103. Green DR, Llambi F. Cell death signaling. Cold Spring Harb Perspect Biol. 2015;7:a006080.

    Article  PubMed  PubMed Central  Google Scholar 

  104. Aramwit P, Motta A, Kundu SC. Tissue engineering: from basic sciences to clinical perspectives. Biomed Res Int. 2017;2017:8659036.

    Article  PubMed  PubMed Central  Google Scholar 

  105. O’Brien FJ. Biomaterials & scaffolds for tissue engineering. Mater Today. 2011;14:88–95.

    Article  CAS  Google Scholar 

  106. Fodale V, et al. Mechanism of cell adaptation: when and how do cancer cells develop chemoresistance? Cancer J. 2011;17:89–95.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Sung HJ, et al. The effect of scaffold degradation rate on three-dimensional cell growth and angiogenesis. Biomaterials. 2004;25:5735–42.

    Article  CAS  PubMed  Google Scholar 

  108. Li Y, Yang S-T. Effects of three-dimensional scaffolds on cell organization and tissue development. Biotechnol Bioprocess Eng. 2001;6:311–25.

    Article  CAS  Google Scholar 

  109. Haswell LE, et al. The development of an in vitro 3D model of goblet cell hyperplasia using MUC5AC expression and repeated whole aerosol exposures. Toxicol Lett. 2021;347:45–57.

    Article  CAS  PubMed  Google Scholar 

  110. Heindl LM, et al. Myofibroblast metaplasia after descemet membrane endothelial keratoplasty. Am J Ophthalmol. 2011;151:1019-1023.e2.

    Article  PubMed  Google Scholar 

  111. Barad M, et al. Biallelic mutations in LAMA5 disrupts a skeletal noncanonical focal adhesion pathway and produces a distinct bent bone dysplasia. EBioMedicine. 2020;62: 103075.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. Kusuhara H, et al. Tissue engineering a model for the human ear: assessment of size, shape, morphology, and gene expression following seeding of different chondrocytes. Wound Repair Regener. 2009;17:136–46.

    Article  Google Scholar 

  113. Deng Y, et al. Engineering hyaline cartilage from mesenchymal stem cells with low hypertrophy potential via modulation of culture conditions and Wnt/β-catenin pathway. Biomaterials. 2019;192:569–78.

    Article  CAS  PubMed  Google Scholar 

  114. King TC. 1—cell injury, cellular responses to injury, and cell death. In: King TC, editor. Elsevier’s integrated pathology. Philadelphia: Mosby; 2007. p. 1–20.

    Google Scholar 

  115. Huang RJ, et al. Diagnosis and management of gastric intestinal metaplasia: current status and future directions. Gut Liver. 2019;13:596–603.

    Article  PubMed  PubMed Central  Google Scholar 

  116. Esmaeili J, et al. Employing hydrogels in tissue engineering approaches to boost conventional cancer-based research and therapies. RSC Adv. 2021;11:10646–69.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  117. Mastorides S, Maronpot RR. 5—carcinogenesis. In: Haschek WM, Rousseaux CG, Wallig MA, editors. Handbook of toxicologic pathology. 2nd ed. San Diego: Academic Press; 2002. p. 83–122.

    Chapter  Google Scholar 

  118. Lombardo ME, et al. 3D polymeric supports promote the growth and progression of anaplastic thyroid carcinoma. Biochem Biophys Res Commun. 2020;531:223–7.

    Article  CAS  PubMed  Google Scholar 

  119. Luo Y, et al. Chapter twenty-five—three-dimensional scaffolds. In: Lanza R, Langer R, Vacanti J, editors., et al., Principles of tissue engineering. 3rd ed. Burlington: Academic Press; 2007. p. 359–73.

    Chapter  Google Scholar 

  120. Hussain R, Ghafoor F, Khattak MA. Chapter 5–3D scaffolds of borate glass and their drug delivery applications. In: Kaur G, editor. Biomedical, therapeutic and clinical applications of bioactive glasses. New York: Woodhead Publishing; 2019. p. 153–73.

    Chapter  Google Scholar 

  121. Remuzzi A, et al. Effect of the 3D artificial nichoid on the morphology and mechanobiological response of mesenchymal stem cells cultured in vitro. Cells. 2020;9:1873.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  122. Simon Jr CG et al. Morphological changes driven by nanofibrous scaffolds induce marrow stromal cell osteogenesis. 2011.

  123. Shaw AS, Filbert EL. Scaffold proteins and immune-cell signalling. Nat Rev Immunol. 2009;9:47–56.

    Article  CAS  PubMed  Google Scholar 

  124. Mohd Daud N, et al. Degradation and in vitro cell–material interaction studies on hydroxyapatite-coated biodegradable porous iron for hard tissue scaffolds. J Orthopaed Transl. 2014;2:177–84.

    Article  Google Scholar 

  125. Bruzauskaite I, et al. Scaffolds and cells for tissue regeneration: different scaffold pore sizes-different cell effects. Cytotechnology. 2016;68:355–69.

    Article  CAS  PubMed  Google Scholar 

  126. Choi DJ, et al. Effect of the pore size in a 3D bioprinted gelatin scaffold on fibroblast proliferation. J Ind Eng Chem. 2018;67:388–95.

    Article  CAS  Google Scholar 

  127. Gupte MJ, et al. Pore size directs bone marrow stromal cell fate and tissue regeneration in nanofibrous macroporous scaffolds by mediating vascularization. Acta Biomater. 2018;82:1–11.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  128. Zhang Z-Z, et al. Role of scaffold mean pore size in meniscus regeneration. Acta Biomater. 2016;43:314–26.

    Article  CAS  PubMed  Google Scholar 

  129. Chen Z, et al. Influence of the pore size and porosity of selective laser melted Ti6Al4V ELI porous scaffold on cell proliferation, osteogenesis and bone ingrowth. Mater Sci Eng C. 2020;106: 110289.

    Article  CAS  Google Scholar 

  130. Liu Y, et al. Facilitated vascularization and enhanced bone regeneration by manipulation hierarchical pore structure of scaffolds. Mater Sci Eng, C. 2020;110: 110622.

    Article  CAS  Google Scholar 

  131. Vijayavenkataraman S, Lu W, Fuh J. 3D bioprinting of skin: a state-of-the-art review on modelling, materials, and processes. Biofabrication. 2016;8: 032001.

    Article  CAS  PubMed  Google Scholar 

  132. Albanna M, et al. In situ bioprinting of autologous skin cells accelerates wound healing of extensive excisional full-thickness wounds. Sci Rep. 2019;9:1856.

    Article  PubMed  PubMed Central  Google Scholar 

  133. Moncal KK, et al. Intra-operative bioprinting of hard, soft, and hard/soft composite tissues for craniomaxillofacial reconstruction. Adv Func Mater. 2021;31:2010858.

    Article  CAS  Google Scholar 

Download references

Funding

This research did not receive any specific grant from funding agencies in the public, commercial, or not-for-profit sectors.

Author information

Authors and Affiliations

Authors

Contributions

JE contributed to the study’s conception and design. Material preparation, data collection, and analysis were performed by JE and LC. The first draft of the manuscript was written by JE and all authors commented on previous versions of the manuscript. All authors read and approved the final manuscript. AB critically revised the work.

Corresponding author

Correspondence to Aboulfazl Barati.

Ethics declarations

Conflict of interest

There are no financial conflicts of interest to disclose.

Ethical approval

This is a review study focusing on the previous studies. The authors confirm that no animal study has been carried out in this research.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Esmaeili, J., Barati, A. & Charelli, L.E. Discussing the final size and shape of the reconstructed tissues in tissue engineering. J Artif Organs 26, 95–111 (2023). https://doi.org/10.1007/s10047-022-01360-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10047-022-01360-1

Keywords

Navigation