Skip to main content
Log in

Effects of three-dimensional scaffolds on cell organization and tissue development

  • Published:
Biotechnology and Bioprocess Engineering Aims and scope Submit manuscript

Abstract

Tissue engineering scaffolds play a critical role in regulating the reconstructed human tissue development. Various types of scaffolds have been developed in recent years, including fibrous matrix and foam-like scaffolds. The design of scaffold materials has been investigated extensively. However, the design of physical structure of the scaffold, especially fibrous matrices, has not received much attention. This paper compares the different characteristics of fibrous and foam-like scaffolds, and reviews regulatory roles of important scaffold properties, including surface geometry, scaffold configuration, pore structure, mechanical property and bioactivity. Tissue regeneration, cell organization, proliferation and differentiation under different microstructures were evaluated. The importance of proper scaffold selection and design is further discussed with the examples of bone tissue engineering and stem cell tissue engineering. This review addresses the importance of scaffold microstructure and provides insights in designing appropriate scaffold structure for different applications of tissue engineering.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

ALP:

alkaline phosphatase

BMP:

bone morphogenetic protein

ECM:

extracellular matrix

EGF:

epidermal growth factor

GAG:

glycosaminoglycans

PEG:

poly(ethylene glycol)

PET:

polyethylene terephthalate

PGA:

poly(glycolic acid)

PLA:

poly(lactic acid)

PGLA:

poly(glycolic-co-lactic acid)

PLG:

poly(lactic-co-glycolide)

PLGA:

poly(lactic-co-glycolic acid)

PTFE:

polytetrafluoroethylene

VEGF:

vascular endothelial growth factor

References

  1. Langer, R. and J. P. Vacanti (1993) Tissue engineering.Science 260: 920–926.

    CAS  Google Scholar 

  2. Langer, R. (2000) Tissue engineering.Molecular Therapy 1: 12–15.

    CAS  Google Scholar 

  3. Shastri, V. P., I. Martin, and R. Langer (2000) Macroporous polymer foams by hydrocarbon templating.Proc. Natl. Acad. Sci. USA 86: 933–937.

    Google Scholar 

  4. Oberpenning, F., J. Meng, J. J. Yoo, and A. Atala (1999) De novo reconstitution of a functional mammalian urinary bladder by tissue engineering.Nature Biotechnol. 17: 149–155.

    CAS  Google Scholar 

  5. Niklason, L. E., J. Gao, W. M. Abbott, K. K. Hirschi, S. Houser, R. Marini, and R. Langer (1999) Functional arteries grown in vitro.Science 284: 489–493.

    CAS  Google Scholar 

  6. Griffith, M., R. Osborne, R. Munger, X. Xiong, C. J. Doillon, N. L. C. Laycock, M. Hakim, Y. Song, and M. A. Watsky (1999) Functional human corneal equivalents constructed from cell lines.Science 286: 2169–2172.

    CAS  Google Scholar 

  7. Boyan, B. D., T. W. Hummert, D. D. Dean, and Z. Schwartz (1996) Role of material surfaces in regulating bone and cartilage cell response.Biomaterials 17: 137–146.

    CAS  Google Scholar 

  8. Ingber, D. E. and J. Folkman (1989) Mechanical switching between growth and differentiation during fibroblast growth factor-stimulated angiogenesis in vitro: role of extracellular matrix.J. Cell Biol. 109: 317–330.

    CAS  Google Scholar 

  9. Mooney, D. J., L. Hansen, J. P. Vacanti, R. Langer, S. Farmer, and D. E. Ingber (1992) Switching from differentiation to growth in hepatocytes: control by extracellular matrix.J. Cellular Physiol. 151: 497–505.

    CAS  Google Scholar 

  10. Sittinger, M., D. Reitzel, M. Dauner, H. Hierlemann, C. Hammer, E. Kastenbauer, H. Planck, G. R. Burmester, and J. Bujia (1996) Resorbable polyesters in cartilage engineering: affinity and biocompatibility of polymer fiber structures to chondrocytes.I. Biomed. Mater. Res. (Appl. Biomater.) 33: 57–63.

    CAS  Google Scholar 

  11. Kim, B.-S., J. Nikolovski, J. Bonadio, E. Smiley, and D. J. Mooney (1999) Engineered smooth muscle tissues: regulating cell phenotype with the scaffold.Exp. Cell Res. 251: 318–328.

    CAS  Google Scholar 

  12. Walboomers, X. F., H. J. E. Croes, L. A. Ginsel, and J. A. Jansen (1999) Contact guidance of rat fibroblasts on various implant materials.J. Biomed. Mater. Res. 47: 204–212.

    CAS  Google Scholar 

  13. Chinn, J. A., T. A. Horbett, B. D. Ratner, M. B. Schway, Y. Haque, and S. D. Hauschka (1989) Enhancement of serum fibronectin adsorption and the clonal plating efficiencies of Swiss Mouse 3T3 fibroblast and MM14 Mouse myoblast cells on polymer substrates modified by radiofrequency plasma deposition.J. Colloid Interface Sci. 127: 67–87.

    CAS  Google Scholar 

  14. Chen, W. and T. J. McCarthy (1998) Chemical surface modification of poly(ethylene terephthalate).Macromolecules 31: 3648–3655.

    CAS  Google Scholar 

  15. Madihally, S. V. and W. T. Matthew (1999) Porous chitosan scaffolds for tissue engineering.Biomaterials 20: 1133–1142.

    CAS  Google Scholar 

  16. James, K. and J. Kohn (1996) New biomaterials for tissue engineering.MRS Bulletin 21: 22–27.

    CAS  Google Scholar 

  17. Aigner, J., J. Tegeler, P. Hutzler, D. Campoccia, A. Pavesio, C. Hammer, E. Kastenbauer, and A. Naumann (1998) Cartilage tissue engineering with novel nonwoven structured biomaterial based on hyaluronic acid benzyl ester.J. Biomed. Mater. Res. 42: 172–181.

    CAS  Google Scholar 

  18. Glicklis, R., L. Shapiro, R. Agbaria, J. C. Merchuk, and S. Cohen (2000) Hepatocyte behavior within three-dimensional porous alginate scaffolds.Biotechnol. Bioeng. 67: 344–353.

    CAS  Google Scholar 

  19. Temenoff, J. S. and A. G. Mikos (2000) Review: tissue engineering for regeneration of articular cartilage.Biomaterials 21: 431–440.

    CAS  Google Scholar 

  20. Angelova, N. and D. Hunkeler (1999) Rationalizing the design of polymeric biomaterials.Trends Biotechnol. 17: 409–421.

    CAS  Google Scholar 

  21. Chen, C. S., M. Mrksich, S. Huang, G. M. Whitesides, and D. E. Ingber (1998) Micropatterned surfaces for control of cell shape, position, and function.Biotechnol. Prog. 14: 356–363.

    CAS  Google Scholar 

  22. Chen, C. S., M. Mrksich, S. Huang, G. M. Whitesides, and D. E. Ingber (1997) Geometric control of cell life and death.Science 276: 1425–1428.

    CAS  Google Scholar 

  23. Singhvi, R., A. Kumar, G. P. Lopez, G. N. Stephanopoulos, D. I. C. Wang, G. M. Whitesides, and D. E. Ingber (1994) Engineering cell shape and function.Science 264: 696–698.

    CAS  Google Scholar 

  24. Braber, E. T. D., J. E. D. Ruijter, H. T. J. Smits, L. A. Ginsel, A. F. V. Recum, and J. A. Jansen (1995) Effect of parallel surface microgrooves and surface energy on cell growth.J. Biomed. Mater. Res. 29: 511–518.

    Google Scholar 

  25. van Kooten, T. G., J. F. Whitesides, and A. F. von Recum (1998) Influence of silicone (PDMS) surface texture on human skin fibroblast proliferation as determined by cell cycle analysis.J. Biomed. Mater. Res. (Appl. Biomater.) 43: 1–14.

    Google Scholar 

  26. Singhvi, R., G. Stephanopoulos, and D. I. C. Wang (1994) Review: Effects of substratum morphology on cell physiology.Biotechnol. Bioeng. 43: 764–771.

    CAS  Google Scholar 

  27. Rezania, A. and K. E. Healy (1999) Biomimetic peptide surfaces that regulate adhesion, spreading, cytoskeletal organization, and mineralization of the matrix deposited by osteoblast-like cells.Biotechnol. Prog. 15: 19–32.

    CAS  Google Scholar 

  28. Folch, A. and M. Toner (1998) Cellular micropatterns on biocompatible materials.Biotechnol. Prog. 14: 388–392.

    CAS  Google Scholar 

  29. Patel, N., R. Padera, G. H. W. Sanders, S. M. Cannizzaro, M. C. Davies, R. Langer, C. J. Roberts, S. J. B. Tendler, P. M. Williams, and K. M. Shakesheff (1998) Spatially controlled cell engineering on biodegradable polymer surfaces.FASEB J. 12: 1447–1454.

    CAS  Google Scholar 

  30. Cannizzaro, S. M., R. E. Padera, R. Langer, R. A. Rogers, F. E. Black, M. C. Davies, S. J. B. Tendler, and K. M. Shakeshef (1998) A novel biotinylated degradable polymer for cell-interactive applications.Biotechnol. Bioeng. 58: 529–535.

    CAS  Google Scholar 

  31. Ito, Y. (1998) Regulation of cell functions by micropattern-immobilized biosignal molecules.Nanotechnology 9: 200–204.

    CAS  Google Scholar 

  32. Wueller-Klieser, M. (1997) Three-dimensional cell cultures: from molecular mechanisms to clinical applications.Am. J. Physiol. Cell Physiol. 273: C1109-C1123.

    Google Scholar 

  33. Hoffman, R. M. (1994) The three-dimensional question: can clinically-relevant tumor drug resistance be measuredin vitro.Cancer Metastasis Rev. 13: 169–173.

    CAS  Google Scholar 

  34. Chen, G., T. Ushida, and T. Tateishi (2000) A biodegradable hybrid sponge nested with collagen microsponges.J. Biomed. Mater. Res. 51: 273–279.

    CAS  Google Scholar 

  35. Kim, B.-S. and D. J. Mooney (1998) Development of biocompatible synthetic extracellular matrices for tissue engineering.Trends Biotechnol. 16: 224–230.

    CAS  Google Scholar 

  36. Sittinger, M., J. Bujia, N. Rotter, D. Reitzel, W. W. Minuth, and G. R. Burmester (1996) Tissue engineering and autologous transplant formation: practical approaches with resorbable biomaterials and new cell culture techniques.Biomaterials 17: 237–242.

    CAS  Google Scholar 

  37. Bhat, G. S. (1995) Nonwovens as three-dimensional textiles for composites.Materials Manufacturing Proc. 10: 667–688.

    CAS  Google Scholar 

  38. Wake, M. C., P. K. Gupta, and A. G. Mikos (1996) Fabrication of pliable biodegradable polymer foams to engineer soft tissues.Cell Transplantation 5: 465–473.

    CAS  Google Scholar 

  39. Lu, L. and A. G. Mikos (1996) The importance of new processing techniques in tissue engineering.MRS Bulletin 21: 28–32.

    CAS  Google Scholar 

  40. Harris, L. D., B. S. Kim, and D. J. Mooney (1998) Open pore biodegradable matrices foamed with gas foaming.J. Biomed. Mater. Res. 42: 396–402.

    CAS  Google Scholar 

  41. Whang, K., C. H. Thomas, and K. E. Healy (1995) A novel method to fabricate bioasorbable scaffolds.Polymer 36: 837–842.

    CAS  Google Scholar 

  42. Kang, H.-W., Y. Tabata, and Y. Ikada (1999) Fabrication of porous gelatin scaffolds for tissue engineering.Biomaterials 20: 1339–1344.

    CAS  Google Scholar 

  43. Mooney, D. J., C. L. Mazzoni, C. Breuer, K. McNamara, D. Hern, J. P. Vacanti, and R. Langer (1996) Stabilized polyglycolic acid fibre-based tubes for tissue engineering.Biomaterials 17: 115–124.

    CAS  Google Scholar 

  44. Li, Y., T. Ma, S. T. Yang, and D. A. Kniss (2001) Thermal compression and characterization of three-dimensional nonwoven PET matrices as tissue engineering scaffolds.Biomaterials 22: 609–618.

    CAS  Google Scholar 

  45. Kim, S.-H. and C.-C. Chu (2000). Pore structure analysis of swollen dextran-methacrylate hydrogel by SEM and mercury intrusion porosimetry.J. Biomed. Mater. Res. (Appl. Biomater.) 53: 258–266.

    CAS  Google Scholar 

  46. Berthiaume, E., P. Moghe, M. Toner, and M. L. Yarmush (1996) Effect of extracellular matrix topology on cell structure, function, and physiological responsiveness: hepatocytes cultured in a sandwich configuration.FASEB J. 10: 1471–1478.

    CAS  Google Scholar 

  47. Freed, L. E., J. C. Marquis, G. Vunjak-Novakovic, J. Emmanual, and R. Langer (1994) Composition of cell-polymer cartilage implants.Biotechnol. Bioeng. 43: 605–614.

    CAS  Google Scholar 

  48. Sanders, J. E., C. E. Stiles, and C. L. Hayes (2000) Tissue response to single-polymer fibers of varying diameters: Evaluation of fibrous encapsulation and macrophage density.J. Biomed. Mater. Res. 52: 231–237.

    CAS  Google Scholar 

  49. Wintermantel, E., J. Mayer, K.-L. Eckert, P. Luscher, and M. Mathey (1996) Tissue engineering scaffolds using superstructures.Biomaterials 17: 83–91.

    CAS  Google Scholar 

  50. Ranucci, C. S. and P. V. Moghe (1999) Polymer substrate topography actively regulates the multicellular organization and liver-specific functions of cultured hepatocytes.Tissue Eng. 5: 407–420.

    CAS  Google Scholar 

  51. Ranucci, C. S., A. Kumar, S. P. Batra, and P. V. Moghe (2000) Control of hepatocyte function on collagen foams: sizing matrix pores toward selective induction of 2-D and 3-D cellulr morphogenesis.Biomaterials 21: 783–793.

    CAS  Google Scholar 

  52. Takagi, M., T. Sasaki, and T. Yoshida (1999) Spatial development of the cultivation of a bone marrow stromal cell line in porous carriers.Cytotechnology 31: 225–231.

    CAS  Google Scholar 

  53. Nehrer, S., H. A. Breinan, A. Ramappa, G. Young, S. Shortkroff, L. K. Louie, C. B. Sledge, I. V. Yannas, and M. Spector (1997) Matrix collagen type and pore size influence behaviour of seeded canine chondrocytes.Biomaterials 18: 769–776.

    CAS  Google Scholar 

  54. Brauker, J. H., V. E. Carr-Brendel, L. A. Martinson, J. Crudele, W. D. Johnston, and R. C. Johnson (1995) Neovascularization of synthetic membranes directed by membrane microarchitecture.J. Biomed. Mater. Res. 29: 1517–1524.

    CAS  Google Scholar 

  55. Wake, M. C., C. W. Patrick, and A. G. Mikos (1994) Pore morphology effects on the fibrovascular tissue growth in porous polymer substrates.Cell Transplantation 3: 339–343.

    CAS  Google Scholar 

  56. Yannas, I. V., E. Lee, O. P. Orgil, E. M. Krabut, and F. Murphy (1989) Synthesis and characterization of a model extracellular matrix that induces partial regeneration of adult mammalian skin.Proc. Natl. Acad. Sci. USA 86: 933–937.

    CAS  Google Scholar 

  57. Evans, G. R. D., K. Brandt, M. S. Widmer, L. Lu, R. K. Meszlenyi, P. K. Gupta, A. G. Mikos, J. Hodges, J. Williams, A. Gurlek, A. Nabawi, R. Lohman, and Jr. C. W. Patrick (1999) In vivo evaluation of poly(L-lactic acid) porous conduits for peripheral nerve regeneration.Biomaterials 20: 1109–1115.

    CAS  Google Scholar 

  58. Dillon, G. P., X. Yu, A. Sridharan, J. P. Ranieri, and R. V. Bellamkonda (1998) The influence of physical structure and charge on neurite extension in a 3D hydrogel scaffold.J. Biomaterials Sci. Polymer Edition 9: 1049–1069.

    CAS  Google Scholar 

  59. Patrick, C. W., P. B. Chauvin, J. Hobley, and G. P. Reece (1999) Preadipocyte seeded PLGA scaffolds for adipose tissue engineering.Tissue Eng. 5: 139–151.

    CAS  Google Scholar 

  60. Chang, B.-S., C.-K. Lee, K.-S. Hong, H.-J. Youn, H.-S. Ryu, S.-S. Chung, and K.-W. Park (2000) Osteoconduction at porous hydroxyapatite with various pore configurations.Biomaterials 21: 1291–1298.

    CAS  Google Scholar 

  61. Gauthier, O., J.-M. Bouler, E. Aguado, P. Pilet, and G. Daculsi (1998) Macroporous biphasic calcium phosphate ceramics: influence of macropore diameter and macroporosity percentage on bone ingrowth.Biomaterials 19: 133–139.

    CAS  Google Scholar 

  62. Whang, K., K. E. Healy, D. R. Elenz, E. K. Nam, D. C. Tsai, C. H. Thomas, G. W. Nuber, F. H. Glorieux, R. Travers, and S. M. Sprague (1999) Engineering bone regeneration with bioabsorbable scaffolds with novel microarchitecture.Tissue Eng. 5: 35–51.

    CAS  Google Scholar 

  63. Hayen, W., M. Goebeler, S. Kumar, R. Rieben, and V. Hehls (1999) Hyaluronan stimulates tumor cell migration by modulating the fibrin fiber architecture.J. Cell Sci. 112: 2241–2251.

    CAS  Google Scholar 

  64. Matsuda, T. and Y. Nakayama (1996) Surface microarchitectural design in biomedical applications: in vitro transmural endothelialization on microporous segmented polyurethane films fabricated using an excimer laser:J. Biomed. Mater. Res. 31: 235–242.

    CAS  Google Scholar 

  65. Ma, T., Y. Li, S. T. Yang, and D. A. Kniss (1999) Tissue engineering human placenta trophoblast cells in 3-D fibrous matrix: spatial effects on cell proliferation and function.Biotechnol. Prog. 15: 715–724.

    CAS  Google Scholar 

  66. Ma, T., Y. Li, S. T. Yang, and D. A. Kniss (2000) Effects of pore size in 3-D fibrous matrix on human trophoblast tissue development.Biotechnol. Bioeng. 70: 606–618.

    CAS  Google Scholar 

  67. Herbert, C. B., C. Nagaswami, G. D. Bittner, J. A. Hubbell, and J. W. Weisel (1998) Effects of fibrin micromorphology on neurite growth from dorsal root ganglia cultured in three-dimensional fibrin gels.J. Biomed. Mater. Res. 40: 551–559.

    CAS  Google Scholar 

  68. Freed, L. E., G. Vunjak-Novakovic, and R. Langer (1993) Cultivation of cell-polymer cartilage implants in bioreactors.J. Cellular Biochem. 51: 257–264.

    CAS  Google Scholar 

  69. Ishaug, S. L., G. M. Crane, M. J. Miller, A. W. Yasko, M. J. Yaszemski, and A. G. Mikos (1997) Bone formation by three-dimensional stromal osteoblast culture in biodegradable polymer scaffolds.J. Biomed. Mater. Res. 36: 17–28.

    CAS  Google Scholar 

  70. Ishaug-Riley, S. L., G. M. Crane, M. J. Yaszemski, and A. G. Mikos (1998) Three-dimensional culture of rat calvarial osteoblasts in porous biodegradable polymers.Biomaterials 36: 17–28.

    Google Scholar 

  71. Kino, Y., M. Sawa, S. Kasai, F. Nakazawa, K. Kato, T. Yamamoto, and M. Mito (1996) Immobilization of rat hepatocytes on multiporous microcarriers with larger pores and their metabolic activity.Cell Transplantation 5: S35-S37.

    CAS  Google Scholar 

  72. Kaufmann, P. M., S. Heimrath, B. S. Kim, and D. J. Mooney (1997) Highly porous polymer matrices as a three-dimensional culture system for hepatocytes: initial results.Transplantation Proceedings 29: 2032–2034.

    CAS  Google Scholar 

  73. Moghe, P. V., F. Berthiaume, R. M. Ezzell, M. Toner, R. G. Tompkins, and M. L. Yarmush (1996) Culture matrix configuration and composition in the maintenance of hepatocyte polarity and function.Biomaterials 17: 373–385.

    CAS  Google Scholar 

  74. Shea, L. D., E. Smiley, J. Bonadio, and D. J. Mooney (1999) DNA delivery from polymer matrices for tissue engineering.Nature Biotechnol. 17: 551–554.

    CAS  Google Scholar 

  75. Eiselt, P., B.-S. Kim, B. Chacko, B. Isenberg, M. C. Peters, K. G. Greene, W. D. Roland, A. B. Loebsack, K. J. L. Burg, C. Culberson, C. R. Halerstadt, W. D. Holder, and D. J. Mooney (1998) Development of technologies aiding large-tissue engineering.Biotechnol. Prog. 14: 134–140.

    CAS  Google Scholar 

  76. Hubbell, J. A. (1999) Bioactive biomaterials.Curr. Opin. Biotechnol. 10: 123–129.

    CAS  Google Scholar 

  77. Maquet, V., D. Martin, B. Malgrange, R. Franzen, J. Schoenen, G. Moonen, and R. Jerome (2000) Peripheral nerve regeneration using bioresorbable macroporous polylactide scaffolds.J. Biomed. Mater. Res. 52: 639–651.

    CAS  Google Scholar 

  78. Freed, L. E. and G. Vunjak-Novakovic (1998) Culture of organized cell communities.Adv. Drug Delivery Rev. 33: 15–30.

    CAS  Google Scholar 

  79. Goldstein, A. S., G. Zhu, G. E. Morris, R. K. Meszlenyi, and A. G. Mikos (1999) Effect of osteoblastic culture conditions on the structure of poly(DL-lactic-co-glycolic acid) foam scaffolds.Tissue Eng. 5: 421–433.

    CAS  Google Scholar 

  80. Shapiro, L. and S. Cohen (1997) Novel alginate sponges for cell culture and transplantation.Biomaterials 18: 583–590.

    CAS  Google Scholar 

  81. Kim, B.-S. and D. J. Mooney (1998) Engineering smooth muscle tissue with a predefined structure.J. Biomed. Mater. Res. 41: 322–332.

    CAS  Google Scholar 

  82. Kellomaki, M., H. Niiranen, K. Puumanen, N. Ashammakhi, T. Waris, and P. Tormala (2000) Bioabsorbable scaffolds for guided bone regeneration and generation.Biomaterials 21: 2495–2505.

    CAS  Google Scholar 

  83. Hutmacher, D. W. (2000) Scaffolds in tissue engineering bone and cartilage.Biomaterials 21: 2529–2543.

    CAS  Google Scholar 

  84. Burg, K. J. L., S. Porter, and J. F. Kellam (2000) Biomaterial development for bone tissue engineering.Biomaterials 21: 2347–2359.

    CAS  Google Scholar 

  85. Reddi, A. H. (2000) Morphogenesis and tissue engineering of bone and cartilage: inductive signals, stem cells, and biomimetic biomaterials.Tissue Eng. 6: 351–359.

    CAS  Google Scholar 

  86. Naughton, B. A., R. A. Preti, and G. K. Naughton (1987) Hematopoiesis on nylon mesh templates. I. Long-term culture of rat bone marrow cells.J. Med. 18: 219–250.

    CAS  Google Scholar 

  87. Wang, T.-Y., J. K. Brennan, and J. H. D. Wu (1995) Multilineal hematopoiesis in a three-dimensional murine long-term bone marrow culture.Exp. Hematol. 23: 26–32.

    CAS  Google Scholar 

  88. Bagley, J., M. Rosenzweig, D. F. Marks, and M. J. Pykett (1999) Extended culture of multipotent hematopoietic progenitors without cytokine augmentation in a novel three-dimensional device.Exp. Hematol. 27: 496–504.

    CAS  Google Scholar 

  89. Li, Y., T. Ma, S. T. Yang, D. A. Kniss, and L. C. Lasky (2000) Ex vivo expansion of hematopoietic progenitors from human cord blood cells in three-dimensional fibrous matrices.Blood 16 (Suppl): 777a.

    Google Scholar 

  90. Tomimori, Y., M. Takagi, and T. Yoshida (2000) The construction of an in vitro three-dimensional hematopoietic microenvironment for mouse bone marrow cells employing porous carriers.Cytotechnology 34: 121–130.

    CAS  Google Scholar 

  91. Thomson, J. A. and J. S. Odorico (2000) Human embryonic stem cell and embryonic germ cell lines.Trends Biotechnol. 18: 53–57.

    CAS  Google Scholar 

  92. Nakano, T. (1996)In vitro development of hematopoietic system from mouse embryonic stem cells: a new approach for embryonic hematopoiesis.Int. J. Hematol. 65: 1–8.

    CAS  Google Scholar 

  93. Schuldiner, M., O. Yanuka, J. Itskovitz-Eldor, D. A. Melton, and N. Benvenisty (2000) Effects of eight growth factors on the differentiation of cells derived from human embryonic stem cells.Proc. Natl. Acad. Sci. USA 97: 11307–11312.

    CAS  Google Scholar 

  94. Zandstra, P. W., H.-V. Le, G. O. Daley, L. G. Griffith, and D. A. Lauffenburger (2000) Leukemia inhibitory factor (LIF) concentration modulates embryonic stem cell selfrenewal and differentiation independently of proliferation.Biotechnol. Bioeng. 69: 607–617.

    CAS  Google Scholar 

  95. Muckle, D. S. and R. J. Minns (1989) Biological response to woven carbon fibre pads in the knee: a clinical and experimental study.J. Bone Jt. Surg. (Br.) 71: 60–62.

    Google Scholar 

  96. Grande, D. A., C. Halberstadt, G. Naughton, R. Schwartz, and R. Manji (1997) Evaluation of matrix scaffolds for tissue engineering of articular cartilage grafts.J. Biomed. Mater. Res. 34: 211–220.

    CAS  Google Scholar 

  97. Dasdia, T., S. Bazzaco, L. Bottero, R. Buffa, S. Ferrero, G. Campanelli, and E. Dolfini (1998) Organ culture in 3-Dimensional matrix:in vitro model for evaluating biological compliance of synthetic mashes for abdominal wall repair.J. Biomed. Mater. Res. 43: 204–209.

    CAS  Google Scholar 

  98. Hasegawa, M., A. Sudo, Y. Shikinami, and A. Uchida (1999) Biological performance of a three-dimensional fabric as artificial cartilage in the repair of large osteochondral defects in rabbit.Biomaterials 20: 1969–1975.

    CAS  Google Scholar 

  99. Freed, L. E., G. Vunjak-Novakovic, R. J. Biron, D. B. Eagles, D. C. Lesnoy, S. K. Barlow, and R. Langer (1994) Biodegradable polymer scaffolds for tissue engineering.Bio/Technology 12: 689–693.

    CAS  Google Scholar 

  100. Brown, A. N., B.-S. Kim, E. Alsberg, and D. J. Moony (2000) Combining chondrocytes and smooth muscle cells to engineer hybrid soft tissue constructs.Tissue Eng. 6: 297–305.

    CAS  Google Scholar 

  101. Perka, C., R.-S. Spitzer, K. Lindenhayn, M. Sittinger, and O. Schultz (2000) Matrix-mixed culture: New methodology for chondrocyte culture and preparation of cartilage transplants.J. Biomed. Mater. Res. 49: 305–311.

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shang-Tian Yang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Li, Y., Yang, ST. Effects of three-dimensional scaffolds on cell organization and tissue development. Biotechnol. Bioprocess Eng. 6, 311–325 (2001). https://doi.org/10.1007/BF02932999

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02932999

Keywords

Navigation