Skip to main content
Log in

A hybrid of weighted regression and linear models for extraction of reflectance spectra from CIEXYZ tristimulus values

  • Regular Paper
  • Published:
Optical Review Aims and scope Submit manuscript

Abstract

The principal component analysis (PCA) and the non-negative matrix factorization (NNMF) methods are boosted for the recovery of the reflectance spectra from the corresponding CIEXYZ tristimulus values under a given set of viewing conditions by the estimation of CIEXYZ tristimulus values under the second set of illumination through the implementation of weighted regression technique. The weighting function is determined on the basis of the colorimetric differences of desired sample with the samples of testing set. The calculated weights are then used in a weighted regression procedure in an attempt for better estimation of CIEXYZ tristimulus values of samples under the second illuminant. In this manner, the tristimulus values of the training samples under two sets of viewing conditions become available. Two sets of bases, i.e., the six positive-negative eigenvectors and the six non-negative features of reflectance spectra data, are used for spectral recovery purpose. The suggested method increases the spectral and colorimetric performances of recovery.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. V. Babaei, S. H. Amirshahi, and F. Agahian: Color Res. Appl. 36 (2011) 295.

    Article  Google Scholar 

  2. F. Agahian, S. A. Amirshahi, and S. H. Amirshahi: Color Res. Appl. 33 (2008) 360.

    Article  Google Scholar 

  3. T. Harifi, S. H. Amirshahi, and F. Agahian: Opt. Rev. 15 (2008) 302.

    Article  Google Scholar 

  4. N. Eslahi, S. H. Amirshahi, and F. Agahian: Opt. Rev. 16 (2009) 296.

    Article  Google Scholar 

  5. S. H. Amirshahi and S. A. Amirshahi: Opt. Rev. 17 (2010) 562.

    Article  Google Scholar 

  6. N. Shimano: IEEE Trans. Image Process. 15 (2006) 1848.

    Article  ADS  Google Scholar 

  7. N. Shimano, K. Terai, and M. Hironaga: J. Opt. Soc. Am. A 24 (2007) 3211.

    Article  ADS  Google Scholar 

  8. K. Ansari, S. H. Amirshahi, and S. Moradian: Color Technol. 122 (2006) 128.

    Article  Google Scholar 

  9. F. M. Abed, S. H. Amirshahi, and M. M. Abed: J. Opt. Soc. Am. A 26 (2009) 613.

    Article  ADS  Google Scholar 

  10. E. M. Valero, J. L. Nieves, S. M. C. Nascimento, K. Amano, and D. H. Foster: Color Res. Appl. 32 (2007) 352.

    Article  Google Scholar 

  11. D. H. Marimont and B. A. Wandell: J. Opt. Soc. Am. A 9 (1992) 1905.

    Article  ADS  Google Scholar 

  12. J. Parkkinen, J. Hallikainen, and T. Jääskeläinen: J. Opt. Soc. Am. A 6 (1989) 318.

    Article  ADS  Google Scholar 

  13. J. Romero, A. Garcia-Beltrán, and J. Hernández-Andrés: J. Opt. Soc. Am. A 14 (1997) 1007.

    Article  ADS  Google Scholar 

  14. A. Garcia-Beltrán, J. L. Nieves, J. Hernández-Andrés, and J. Romero: Color Res. Appl. 23 (1998) 39.

    Article  Google Scholar 

  15. H. S. Fairman and M. H. Brill: Color Res. Appl. 29 (2004) 104.

    Article  Google Scholar 

  16. I. T. Jolliffe: Principal Component Analysis (Springer, New York, 2002) Springer Series in Statistics, 2nd ed., p. 1.

    MATH  Google Scholar 

  17. D. Y. Tzeng and R. S. Berns: Color Res. Appl. 30 (2005) 84.

    Article  Google Scholar 

  18. T. Jaaskelainen, J. Parkkinen, and S. Toyooka: J. Opt. Soc. Am. A 7 (1990) 725.

    Article  ADS  Google Scholar 

  19. H. Laamanen, T. Jaaskelainen, and J. P. S. Parkkinen: Proc. SPIE 4197 (2000) 367.

    Article  ADS  Google Scholar 

  20. J. Y. Hardeberg: Dr. Thesis, University de Paris VI, Paris (1999).

  21. F. Ayala, J. F. Echávarri, P. Renet, and A. I. Negueruela: J. Opt. Soc. Am. A 23 (2006) 2020.

    Article  ADS  Google Scholar 

  22. S. Bianco: J. Opt. Soc. Am. A 27 (2010) 1868.

    Article  ADS  Google Scholar 

  23. D. D. Lee and H. S. Seung: Nature 401 (1999) 788.

    Article  ADS  Google Scholar 

  24. G. Buchsbaum and O. Bloch: Vision Res. 42 (2002) 559.

    Article  Google Scholar 

  25. J. Kim and H. Park: SIAM J. Sci. Comput. 33 (2011) 3261.

    Article  MATH  MathSciNet  Google Scholar 

  26. Spectral Database, University of Joensuu Color Group [http://spectral.joensuu.fi/].

  27. M. Abdolsamadi, S. H. Amirshahi, and S. Peyvandi: 12th Int. AIC Congr. (AIC2013), UK, 2013.

    Google Scholar 

  28. Matlab ver 7.8 (MathWork Inc., 2009).

  29. L. T. Maloney and B. A. Wandell: J. Opt. Soc. Am. A 3 (1986) 29.

    Article  ADS  Google Scholar 

  30. Y. Zhao and R. S. Berns: Color Res. Appl. 32 (2007) 343.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Amiri, M.M., Amirshahi, S.H. A hybrid of weighted regression and linear models for extraction of reflectance spectra from CIEXYZ tristimulus values. OPT REV 21, 816–825 (2014). https://doi.org/10.1007/s10043-014-0134-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10043-014-0134-6

Keywords

Navigation