Skip to main content
Log in

Methodology for multispectral camera calibration using frequency component separation

  • Published:
Multimedia Tools and Applications Aims and scope Submit manuscript

Abstract

The calibration process of a multispectral camera is fundamental for analyzing images where color standards must be referenced in a post-processing stage. This work presents a new method to process images acquired with a multiband/multispectral camera and scanned for reflectance information with a commercial spectrophotometer. The strategy implemented is based on a general illumination model describing lighting as an image component that changes depending on the captured environment and reflectance as a component depending only on the object’s surface. Since the relationship between intensity, luminance, and reflectance in a captured image is not linear. A novel general result is that illumination adjustment generates a valid reflectance map with better surface information. An equalization of reflectance components using RGB model separation to standardize the same pixel value for each of the images was performed on eight certified Lucideon Std ceramic tiles. Lighting of 6000k was used to perceive color similar to normal daylight to each tile, both data captured in the same position. Possible industrial applications of the proposed methodology include reducing time and complexity in color inspection, multispectral image processing, and obtention of better color surface representations under various lighting conditions and application requirements. Particularly, this work shows image results interpreted in CIE RGB color space where B12 has values ​​of 44, 61, and 63; B11 has values ​​of 141, 176, and 84; B10 has values ​​of 214, 176, and 203; B9 has values ​​of 123, 89, and 82; B8 has values ​​of 201, 66, and 225; B7 has values ​​of 86, 73, and 103; B6 has values ​​of 22, 37, and 160; B5 has values ​​of 108, 107, and 64. Those compared to values measured by an spectrophotometer as reference device were in good correspondence, achieving percentage calibrations of \(\sim100 \ \%\).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Data availability

Authors inform the readers that the data supporting the findings of this study are available from the corresponding author upon reasonable request.

References

  1. Anwar S, Majid M, Qayyum A, Awais M, Alnowami M, Khan M (2018) J Med Syst 42(11):1–13

    Article  Google Scholar 

  2. Cavaleri T, Giovagnoli A, Nervo M (2013) Procedia Chem 8:45–54

    Article  CAS  Google Scholar 

  3. Dchläpfer D, Richter R (2002) Int J Remote Sens 23(13):2609–2630

    Article  Google Scholar 

  4. de LÉclarage CI (2004) CIE 15: 2004 Technical Report Colorimetry

    Google Scholar 

  5. Dhillon A, Verma GK (2020) Convolutional neural network: a review of models, methodologies and applications to object detection. Prog Artif Intell 9(2):85–112

    Article  Google Scholar 

  6. Dierl M, Eckhard T, Frei B, Klammer M, Eichstädt S (2018) J Eur Opt Society-Rapid Publications 14(1):1–8

    Article  Google Scholar 

  7. Dyer J, Tamburini D, O’Connell ER, Harrison A (2018) A multispectral imaging approach integrated into the study of Late Antique textiles from Egypt. PLoS One 13(10):e0204699

    Article  PubMed  PubMed Central  Google Scholar 

  8. Edwards J, Anderson J, Shuart W, Woolard J (2019) An evaluation of reflectance calibration methods for UAV spectral imagery. Photogram Eng Remote Sens 85:221–230

    Article  Google Scholar 

  9. Elerding GT, Thunen JG, Woody LM (1991) Wedge imaging spectrometer: application to drug and pollution law enforcement. In: Surveillance Technologies, vol 1479. SPIE, pp 380–392

    Chapter  Google Scholar 

  10. Francis FJ (1995) Food quality and preference 6(3):149–155

    Article  Google Scholar 

  11. Gao B, Montes M, Davis M, Goetz A (2009) Remote Sens Environ 113:S17–S24

    Article  Google Scholar 

  12. Gobato R, Simões M (2017) Ciencia e Natura 39(2):459–466

    Article  Google Scholar 

  13. Gómez-Melendez D, Anaya K, Cortes S, Hernández S, Isaza C (2012) Lighting compensation in outdoors. In: 2012 XVII Symposium of Image, Signal Processing, and Artificial Vision (STSIVA). IEEE, pp 237–241

    Chapter  Google Scholar 

  14. Kamilaris A, Prenafeta-Boldú FX (2018) A review of the use of convolutional neural networks in agriculture. J Agric Sci 156(3):312–322

    Article  Google Scholar 

  15. Loaiza H (1999) Introducción a los sistemas de visión en colores. Link: https://bibliotecadigital.univalle.edu.co/bitstream/handle/10893/1337/Introduccion%20a%20los%20sistemas%20de%20vision%20en%20colores.pdf?sequence=6&isAllowed=y

  16. Loesdau M, Chabrier S, Gabillon A (2017) Chromatic indices in the normalized rgb color space. In: 2017 International Conference on Digital Image Computing: Techniques and Applications (DICTA). IEEE, pp 1–8

    Google Scholar 

  17. Luo L, Shen HL, Shao SJ, Xin JH (2015) A multispectral imaging approach to colour measurement and colour matching of single yarns without winding. Color Technol 131(4):342–351

    Article  CAS  Google Scholar 

  18. Luo L, Tsang KM, Shen HL, Shao SJ, Xin JH (2015) An investigation of how the texture surface of a fabric influences its instrumental color. Col Res Appl 40(5):472–482

    Article  Google Scholar 

  19. MacDonald LW, Vitorino T, Picollo M, Pillay R, Obarzanowski M, Sobczyk J, Linhares J (2017) Assessment of multispectral and hyperspectral imaging systems for digitisation of a Russian icon. Herit Sci 5:1–16

    Article  Google Scholar 

  20. Malamas EN, Petrakis EG, Zervakis M, Petit L, Legat JD (2003) A survey on industrial vision systems, applications and tools. Image Vis Comput 21(2):171–188

    Article  Google Scholar 

  21. Malkin F, Larkin JA, Verrill JF, Wardman RH (1997) The BCRA–NPL ceramic colour standards, series II–master spectral reflectance and thermochromism data. J Soc Dye Colour 113(3):84–94

    Article  CAS  Google Scholar 

  22. Nalepa J (2021) Recent advances in multi-and hyperspectral image analysis. Sensors 21(18):6002

    Article  ADS  PubMed  PubMed Central  Google Scholar 

  23. Parrot sequoia multispectral camera. https://www.parrot.com/soluciones-business/profesional/parrot-sequoia. Accessed 14 Sept 2021

  24. Polder G, Van der Heijden G (2001) Multispectral and hyperspectral image acquisition and processing. Proceedings of SPIE 4548:10–17

    Article  ADS  Google Scholar 

  25. Richter R, Schläpfer D (2002) Geo-atmospheric processing of airborne imaging spectrometry data. Part 2: Atmospheric/topographic correction. Int J Remote Sens 23(13):2631–2649

    Article  Google Scholar 

  26. Sara D, Mandava AK, Kumar A, Duela S, Jude A (2021) Hyperspectral and multispectral image fusion techniques for high resolution applications: A review. Earth Sci Inform 14(4):1685–1705

    Article  ADS  Google Scholar 

  27. Solli M, Andersson M, Lenz R, Kruse B (2005) Color measurements with a consumer digital camera using spectral estimation techniques. In: Image Analysis: 14th Scandinavian Conference, SCIA 2005, Joensuu, Finland, June 19−22, 2005. Proceedings, vol 14. Springer, Berlin Heidelberg, pp 105–114

    Chapter  Google Scholar 

  28. Stainvas I, Lowe D (2003) J Mach Learn Res 4:1499–1519

    Google Scholar 

  29. Sunoj S, Igathinathane C, Saliendra N, Hendrickson J, Archer D (2018) Color calibration of digital images for agriculture and other applications. ISPRS J Photogramm Remote Sens 146:221–234

    Article  ADS  Google Scholar 

  30. Thorell L (1983) Advances in display technology. Proceedings of SPIE 386:2–5

    Article  ADS  Google Scholar 

  31. Tremeau A, Bianco S, Schettini R (2016) Proceedings of the 11th Joint Conference on Computer Vision. In: Imaging and computer graphics theory and applications, vol 4, pp 689–696

    Google Scholar 

  32. Wang H, Yang J, Xue B, Yan X, Tao J (2020) A novel color calibration method of multi-spectral camera based on normalized RGB color model. Results Phys 19:103498

    Article  Google Scholar 

  33. Weatherall I, Coombs BD (1992) Skin color measurements in terms of CIELAB color space values. J Investig Dermatol 99(4):468–473

    Article  CAS  PubMed  Google Scholar 

  34. Wu D, Sun DW (2013) Colour measurements by computer vision for food quality control–A review. Trends Food Sci Technol 29(1):5–20

    Article  Google Scholar 

  35. Xu R, Li C, Bernardes S (2021) Development and testing of a uav-based multi-sensor system for plant phenotyping and precision agriculture. Remote Sens 13(17):3517

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jose Amilcar Rizzo-Sierra.

Ethics declarations

Conflicts of interests/Competing interests

The authors would like to inform readers that there is no actual or potential conflict of interests/competing interests of any kind related to the funding and development of this paper.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Juárez-Trujillo, I.A., Zavala-de Paz, J.P., Isaza, C. et al. Methodology for multispectral camera calibration using frequency component separation. Multimed Tools Appl 83, 22327–22346 (2024). https://doi.org/10.1007/s11042-023-15203-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11042-023-15203-5

Keywords

Navigation