Skip to main content
Log in

Adaptive non-negative bases for reconstruction of spectral data from colorimetric information

  • Regular Papers
  • Published:
Optical Review Aims and scope Submit manuscript

Abstract

The positive basis functions of the reflectance spectra of Munsell color chips are extracted by using the classical nonnegative matrix factorization method. Different numbers of basis, i.e., 3 to 5, are determined and used as projection spaces. The spectral reflectances of samples are defined in the desired compact spectral spaces and the performances of the spaces are evaluated through the cost of the “lost data” by computing of the root mean square error between the actual and the reconstructed spectra as well as the corresponding color difference values under different viewing conditions. The method is also compared with the most welcomed technique, i.e., principal component analyzing, and its priority is shown to some extent in the three dimensional space. To show the importance of the spectral behaviors of samples in the dataset on the extracted basis and consequently the error of the spectral reconstruction trial, the adaptive non-negative matrix factorization method is introduced and examined in the reconstruction of spectral data from the colorimetric tristimulus values. The suggested method weights the samples in the database proportional to the colorimetric differences between the specimens in the dataset and the sample whose spectral has been aimed, prior to the extraction of all positive bases. The root mean square errors between the actual and the reconstructed spectra as well as the metamerism indices under A and F11 illuminants are calculated and the results show considerable improvement over the classic non-negative matrix factorization method as well as the principal component analyzing technique.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. L. T. Maloney: J. Opt. Soc. Am. A 3 (1986) 29.

    Article  ADS  Google Scholar 

  2. J. Parkkinen, J. Halikainen, and T. Jaaskelainen: J. Opt. Soc. Am. A 6 (1989) 318.

    Article  ADS  Google Scholar 

  3. D. H. Marimont and B. A. Wandell: J. Opt. Soc. Am. A 9 (1992) 1905.

    Article  ADS  Google Scholar 

  4. M. D’Zmura and G. Iverson: J. Opt. Soc. Am. A 10 (1993) 2148.

    Article  ADS  Google Scholar 

  5. J. Romero, A. Garcia-Beltran, and J. Hernandez-Andres: J. Opt. Soc. Am. A 14 (1997) 1007.

    Article  ADS  Google Scholar 

  6. J. B. Cohen: Psychon. Sci. 1 (1964) 369.

    Google Scholar 

  7. H. S. Fairman and M. H. Brill: Color Res. Appl. 29 (2004) 104.

    Article  Google Scholar 

  8. T. Jaaskelainen, J. Parkkinen, and S. Toyooka: J. Opt. Soc. Am. A 7 (1990) 725.

    Article  ADS  Google Scholar 

  9. A. Garcia-Beltran, J. L. Nieves, J. Hernandez-Andres, and J. Romero: Color Res. Appl. 23 (1998) 39.

    Article  Google Scholar 

  10. E. K. Oxtoby and D. H. Fosterô: Perception 34 (2005) 961.

    Article  Google Scholar 

  11. R. Ramanath, R. G. Kuehni, W. E. Synder, and D. Hinks: Color. Res. Appl. 29 (2004) 29.

    Article  Google Scholar 

  12. K. Ansari, S. H. Amirshahi, and S. Moradian: Color. Technol. 122 (2006) 128.

    Article  Google Scholar 

  13. F. Ayala, J. F. Echavarri, and P. Renet: J. Opt. Soc. Am. A 23 (2006) 2020.

    Article  ADS  Google Scholar 

  14. X. Zhang and H. Xu: J. Opt. Soc. Am. A 5 (2008) 371.

    Article  ADS  Google Scholar 

  15. T. Harifi, S. H. Amirshahi, and F. Agahian: Opt. Rev. 15 (2008) 302.

    Article  Google Scholar 

  16. H. Laamanen, T. Jaaskelainen, and J. P. S. Parkkinen: Proc. SPIE 2001 (4197) 367.

  17. N. Eslahi, S. H. Amirshahi, and F. Agahian: Opt. Rev. 16 (2009) 296.

    Article  Google Scholar 

  18. S. Westland and C. Ripamonti: Computational Colour Science Using Matlab (Wiley, Chichester, U.K., 2004) p. 176.

    Google Scholar 

  19. R. S. Berns: J. Soc. Dyers. Col. 110 (1994) 386.

    Google Scholar 

  20. Y. Sun, F. D. Fracchia, T. W. Calvert, and M. S. Drew: IEEE Comput. Graph. 19 (1999) 61.

    Article  Google Scholar 

  21. N. Attarchi and S. H. Amirshahi: Color Res. Appl. 34 (2009) 26.

    Article  Google Scholar 

  22. H. Shen, P. Cai, S. Shao, and J. Xin: Opt. Express 15 (2007) 15545.

    Article  ADS  Google Scholar 

  23. D. D. Lee and N. S. Seung: Nature 401 (1999) 788.

    Article  ADS  Google Scholar 

  24. G. Buchsbaum and O. Bloch: Vision Res. 42 (2002) 559.

    Article  Google Scholar 

  25. F. Agahian, S. A. Amirshahi, and S. H. Amirshahi: Color Res. Appl. 33 (2008) 360.

    Article  Google Scholar 

  26. V. Babaei, S. H. Amirshahi, and F. Agahian: to be published in Color Res. Appl.

  27. University of Joensuu Color Group. Spectral Database [http://spectral.joensuu.fi/].

  28. MATLAB Version 7.8 (Math Work Inc., 2009).

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Seyed Hossein Amirshahi.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Amirshahi, S.H., Amirhahi, S.A. Adaptive non-negative bases for reconstruction of spectral data from colorimetric information. OPT REV 17, 562–569 (2010). https://doi.org/10.1007/s10043-010-0101-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10043-010-0101-9

Keywords

Navigation