Skip to main content
Log in

Recovery of spectral data using weighted canonical correlation regression

  • Regular Papers
  • Published:
Optical Review Aims and scope Submit manuscript

Abstract

The weighted canonical correlation regression technique is employed for reconstruction of reflectance spectra of surface colors from the related XYZ tristimulus values of samples. Flexible input data based on applying certain weights to reflectance and colorimetric values of Munsell color chips has been implemented for each particular sample which belongs to Munsell or GretagMacbeth Colorchecker DC color samples. In fact, the colorimetric and spectrophotometric data of Munsell chips are selected as fundamental bases and the color difference values between the target and samples in Munsell dataset are chosen as a criterion for determination of weighting factors. The performance of the suggested method is evaluated in spectral reflectance reconstruction. The results show considerable improvements in terms of root mean square error (RMS) and goodness-of-fit coefficient (GFC) between the actual and reconstructed reflectance curves as well as CIELAB color difference values under illuminants A and TL84 for CIE1964 standard observer.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. D. Dupont: Color Res. Appl. 27 (2002) 88.

    Article  Google Scholar 

  2. G. Sharma and S. Wang: Proc. SPIE 4663 (2002) 8.

    Article  ADS  Google Scholar 

  3. D. H. Marimont and B. A. Wandell: J. Opt. Soc. Am. A 9 (1992) 1905.

    Article  ADS  Google Scholar 

  4. H. S. Fairman and M. H. Brill: Color Res. Appl. 29 (2004) 104.

    Article  Google Scholar 

  5. D. Connah, S. Westland, and M. G. A. Thomson: Color Technol. 117 (2001) 309.

    Article  Google Scholar 

  6. L. T. Maloney: J. Opt. Soc. Am. A 3 (1986) 29.

    Article  ADS  Google Scholar 

  7. T. Jaaskelainen, J. Parkkinen, and S. Toyooka: J. Opt. Soc. Am. A 7 (1990) 725.

    Article  ADS  Google Scholar 

  8. M. J. Vrhel, R. Gershon, and L. S. Iwan: Color Res. Appl. 19 (1994) 4.

    Google Scholar 

  9. J. Romero, A. Garcia-Beltran, and J. Hernandez-Andres: J. Opt. Soc. Am. A 14 (1997) 1007.

    Article  ADS  Google Scholar 

  10. A. Garcia-Beltran, J. L. Nieves, J. Hernandez-Andres, and J. Romero: Color Res. Appl. 23 (1998) 39.

    Article  Google Scholar 

  11. I. T. Jolliffe: Principal Component Analysis (Springer-Verlag, New York, 2002) 2nd ed., p. 1.

    MATH  Google Scholar 

  12. D. Y. Tzeng and R. S. Berns: Color Res. Appl. 30 (2005) 84.

    Article  Google Scholar 

  13. K. Ansari, S. H. Amirshahi, and S. Moradian: Color. Technol. 122 (2006) 128.

    Article  Google Scholar 

  14. F. Ayala, J. F. Echavarri, and P. Renet: J. Opt. Soc. Am. A 23 (2006) 2020.

    Article  ADS  Google Scholar 

  15. F. Agahian, S. A. Amirshahi, and S. H. Amirshahi: Color Res. Appl. 33 (2008) 360.

    Article  Google Scholar 

  16. Y. Zhao, L. A. Taplin, M. Nezamabadi, and R. S. Berns: Tech. Rep. Munsell Color Science Laboratory, Center for Imaging Science, Rochester Institute of Technology (2004).

  17. H. Hotelling: Biometrika 28 (1936) 321.

    MATH  Google Scholar 

  18. M. Borga: Dr’s. thesis, Linköping University, Sweden (1998).

    Google Scholar 

  19. R. A. Johnson and D. W. Wichern: Applied Multivariate Statistical Analysis (Prentice-Hall, Upper Saddle River, NJ, 1988) 2nd ed., Chap. 10, p. 438.

    MATH  Google Scholar 

  20. W. W. Cooley and P. R. Lohnes: Multivariate Data Analysis (Wiley, New York, 1971) Chap. 6, p. 168.

    MATH  Google Scholar 

  21. D. Skocaj, A. Leonardis, and H. Bischof: Pattern Recogn. 40 (2007) 1556.

    Article  MATH  Google Scholar 

  22. J. M. DiCarlo and B. A. Wandell: J. Opt. Soc. Am. A 20 (2003) 1261.

    Article  ADS  Google Scholar 

  23. Spectral Database, University of Joensuu Color Group [http://spectral.joensuu.fi/].

  24. Matlab (The MathWork Inc., 2004, Ver. 7).

  25. J. Hernández-Andrés and J. Romero: J. Opt. Soc. Am. A 18 (2001) 412.

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Seyed Hossein Amirshahi.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Eslahi, N., Amirshahi, S.H. & Agahian, F. Recovery of spectral data using weighted canonical correlation regression. OPT REV 16, 296–303 (2009). https://doi.org/10.1007/s10043-009-0055-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10043-009-0055-y

Keywords

Navigation