Skip to main content
Log in

N and P Cycling in Tanzanian Humid Savanna: Influence of Herbivores, Fire, and N2-Fixation

  • Published:
Ecosystems Aims and scope Submit manuscript

Abstract

Availabilities of nitrogen (N) and phosphorus (P) have a strong influence on plant growth and the species composition of savannas, but it is not clear how these availabilities depend on factors such as fire, N2-fixation, and activities of wild herbivores and cattle. We quantified soil N and P availabilities in various ways (extractable pools, mineralization, resin adsorption) along vegetation gradients within a recently abandoned cattle ranch and a former game reserve in Tanzania (both areas now part of the Saadani National Park). We also assessed annual N and P balances to evaluate how long-term availabilities of N and P are affected by large herbivores, symbiotic N2-fixation, and fire. The results show that cattle ranching led to a spatial re-distribution of nutrients, with the local accumulation of P being stronger and more persistent than that of N. In the former game reserve, intensively grazed patches of short grass tended to have elevated soil N and P availabilities; however, because quantities of nutrients removed through grazing exceeded returns in dung and urine, the nutrient balances of these patches were negative. In dense Acacia stands, N2-fixation increased N availability and caused a net annual N input. Fire was the major cause for nutrient losses from tallgrass savanna, and estimated N inputs from the atmosphere and symbiotic N2-fixation were insufficient to compensate for these losses. Our results call into question the common assumption that N budgets in annually burned savanna are balanced; rather, these ecosystems are a mosaic of patches with both N enrichment and impoverishment, which vary according to the vegetation type.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7

Similar content being viewed by others

References

  • Abbadie L. 1990. Carbon and nitrogen mineralization and denitrification in a humid savanna of West Africa (Lamto, Côte d’Ivoire). Acta Oecol 11:717–28.

    Google Scholar 

  • Abbadie L, Mariotti A, Menaut JC. 1992. Independence of savanna grasses from soil organic matter for their nitrogen supply. Ecology 73:608–13.

    Article  Google Scholar 

  • Aranibar JN, Anderson IC, Ringrose S, Macko SA. 2003a. Importance of nitrogen fixation in soil crusts of southern African arid ecosystems: acetylene reduction and stable isotope studies. J Arid Environ 54:345–58.

    Article  Google Scholar 

  • Aranibar JN, Macko SA, Anderson IC, Potgieter ALF, Sowry R, Shugart HH. 2003b. Nutrient cycling responses to fire frequency in the Kruger National Park (South Africa) as indicated by stable isotope analysis. Isot Environ Healt Stud 39:141–58.

    Article  CAS  Google Scholar 

  • Archibald S, Bond WJ, Stock WD, Fairbanks DHK. 2005. Shaping the landscape: fire-grazer interactions in an African savanna. Ecol Appl 15:96–109.

    Article  Google Scholar 

  • Archibald S, Roy DP, van Wilgen BW, Scholes RJ. 2009. What limits fire? An examination of drivers of burnt area in Southern Africa. Glob Change Biol 15:613–30.

    Article  Google Scholar 

  • Augustine DJ. 2003. Long-term, livestock-mediated redistribution of nitrogen and phosphorus in an East African savanna. J Appl Ecol 40:137–49.

    Article  Google Scholar 

  • Augustine DJ. 2004. Temporal asynchrony in soil nutrient dynamics and plant production in a semiarid ecosystem. Ecosystems 7:829–40.

    Article  CAS  Google Scholar 

  • Augustine DJ, McNaughton SJ. 2006. Interactive effects of ungulate herbivores, soil fertility, and variable rainfall on ecosystem processes in a semi-arid savanna. Ecosystems 9:1242–56.

    Article  CAS  Google Scholar 

  • Augustine DJ, McNaughton SJ, Frank DA. 2003. Feedbacks between soil nutrients and large herbivores in a managed savanna ecosystem. Ecol Appl 13:1325–37.

    Article  Google Scholar 

  • Balandreau J. 1976. Rhizospheric nitrogen fixation (C2H2) in Lamto savanna. Rev Ecol Biol Sol 13:529–44.

    Google Scholar 

  • Bate GC. 1981. Nitrogen cycling in savanna ecosystems. In: Clark FE, Rosswall T, Eds. Terrestrial nitrogen cycles. Stockholm: Royal Swedish Academy of Sciences. p 463–75.

    Google Scholar 

  • Bate GC, Gunton C. 1982. Nitrogen in the Burkea savanna. In: Huntley BJ, Walker BH, Eds. Ecology of tropical Savannas. Berlin: Springer. p 498–513.

    Google Scholar 

  • Biondini ME, Patton BD, Nyren PE. 1998. Grazing intensity and ecosystem processes in a northern mixed-grass prairie, USA. Ecol Appl 8:469–79.

    Article  Google Scholar 

  • Blackmore AC, Mentis MT, Scholes RJ. 1990. The origin and extent of nutrient-enriched patches within a nutrient-poor savanna in South Africa. J Biogeogr 17:463–70.

    Article  Google Scholar 

  • Bond WJ, Woodward FI, Midgley GF. 2005. The global distribution of ecosystems in a world without fire. New Phytol 165:525–37.

    Article  PubMed  CAS  Google Scholar 

  • Brookman-Amissah J, Hall JB, Swaine MD, Attakorah JY. 1980. A re-assessment of a fire protection experiment in northeastern Ghana savanna. J Appl Ecol 17:85–99.

    Article  Google Scholar 

  • Buis GM, Blair JM, Burkepile DE, Burns CE, Chamberlain AJ, Chapman PL, Collins SL, Fynn RWS, Govender N, Kirkman KP, Smith MD, Knapp AK. 2009. Controls of aboveground net primary production in mesic savanna grasslands: an inter-hemisphere comparison. Ecosystems 12:982–95.

    Article  CAS  Google Scholar 

  • Bustamante MMC, Medina E, Asner GP, Nardoto GB, Garcia-Montiel DC. 2006. Nitrogen cycling in tropical and temperate savannas. Biogeochemistry 79:209–37.

    Article  Google Scholar 

  • Cech PG. 2008. Impact of fire, large herbivores and N2-fixation on nutrient cycling in humid savanna, Tanzania. Federal Institute of Technology (ETH), Zurich, Switzerland. http://e-collection.ethbib.ethz.ch/view/eth:30655. Accessed 20 July 2010.

  • Cech PG, Edwards PJ, Olde Venterink H. 2010. Why is abundance of herbaceous legumes low in African savanna?—A test with two model species. Biotropica: doi:10.1111/j.744-7429.2009.00622.x.

  • Cech PG, Kuster T, Edwards PJ, Olde Venterink H. 2008. Effects of herbivory, fire and N2-fixation on nutrient limitation in a humid African savanna. Ecosystems 11:991–1004.

    Article  CAS  Google Scholar 

  • Chacon P, Lopezhernandez ID, Lamotte M. 1991. Nitrogen-cycle in a Trachypogon savanna in central Venezuela. Rev Ecol Biol Sol 28:67–75.

    CAS  Google Scholar 

  • Cochard R. 2004. Pattern and dynamics of secondary Acacia zanzibarica woodlands at Mkwaja Ranch, Tanzania. PhD thesis, ETH Zurich, Zurich. http://e-collection.ethbib.ethz.ch/view/eth:27652. Accessed 20 July 2010.

  • Coetsee C, February EC, Bond WJ. 2008. Nitrogen availability is not affected by frequent fire in a South African savanna. J Trop Ecol 24:647–54.

    Article  Google Scholar 

  • Cook GD. 1994. The fate of nutrients during fires in a tropical savanna. Aust J Ecol 19:359–65.

    Article  Google Scholar 

  • Craine JM, Morrow C, Stock WD. 2008. Nutrient concentration ratios and co-limitation in South African grasslands. New Phytol 179:829–36.

    Article  PubMed  CAS  Google Scholar 

  • Cramer MD, Chimphango SBM, Van Cauter A, Waldram MS, Bond W. 2007. Grass competition induces N2 fixation in some species of African Acacia. J Ecol 95:1123–33.

    Article  CAS  Google Scholar 

  • de Rham P. 1973. Recherches sur la minéralisation de l’azote dans les sols des savanes de Lamto (Côte d’Ivoire). Rev Ecol Biol Sol 10:169–96.

    Google Scholar 

  • DeFaria SM, Lewis GP, Sprent JI, Sutherland JM. 1989. Occurrence of nodulation in the Leguminosae. New Phytol 111:607–19.

    Article  Google Scholar 

  • Dougill AJ, Heathwaite AL, Thomas DSG. 1998. Soil water movement and nutrient cycling in semi-arid rangeland: vegetation change and system resilience. Hydrol Process 12:443–59.

    Article  Google Scholar 

  • Edwards PJ, Hollis S. 1982. The distribution of excreta on New Forest grassland used by cattle, ponies and deer. J Appl Ecol 19:953–64.

    Article  Google Scholar 

  • Eriksen C. 2007. Why do they burn the ‘bush’? Fire, rural livelihoods, and conservation in Zambia. Geogr J 173:242–56.

    Article  Google Scholar 

  • Frank DA, Groffman PM. 1998. Ungulate vs. landscape control of soil C and N processes in grasslands of Yellowstone National Park. Ecology 79:2229–41.

    Article  Google Scholar 

  • Frank DA, McNaughton SJ. 1992. The ecology of plants, large mammalian herbivores, and drought in Yellowstone National Park. Ecology 73:2043–58.

    Article  Google Scholar 

  • Frank DA, Zhang YM. 1997. Ammonia volatilization from a seasonally and spatially variable grazed grassland: Yellowstone National Park. Biogeochemistry 36:189–203.

    Article  Google Scholar 

  • Fynn RWS, Haynes RJ, O’Connor TG. 2003. Burning causes long-term changes in soil organic matter content of a South African grassland. Soil Biol Biochem 35:677–87.

    Article  CAS  Google Scholar 

  • Galloway JN, Dentener FJ, Capone DG, Boyer EW, Howarth RW, Seitzinger SP, Asner GP, Cleveland CC, Green PA, Holland EA, Karl DM, Michaels AF, Porter JH, Townsend AR, Vörösmarty CJ. 2004. Nitrogen cycles: past, present, and future. Biogeochemistry 70:153–226.

    Article  CAS  Google Scholar 

  • Geesing D, Felker P, Bingham RL. 2000. Influence of mesquite (Prosopis glandulosa) on soil nitrogen and carbon development: Implications for global carbon sequestration. J Arid Environ 46:157–80.

    Article  Google Scholar 

  • Güsewell S. 2002. Time-dependent effect of fertilization on plant biomass in floating fens. J Veg Sci 13:18–795.

    Article  Google Scholar 

  • Harrington GN. 1974. Fire effects on a Ugandan savanna grassland. Trop Grassl 8:87–101.

    Google Scholar 

  • Hobbs NT. 1996. Modification of ecosystems by ungulates. J Wildl Manag 60:695–713.

    Article  Google Scholar 

  • Hobbs NT, Schimel DS, Owensby CE, Ojima DS. 1991. Fire and grazing in the tallgrass prairie: contingent effects on nitrogen budgets. Ecology 72:1374–82.

    Article  Google Scholar 

  • Holland EA, Detling JK. 1990. Plant response to herbivory and belowground nitrogen cycling. Ecology 71:1040–9.

    Article  Google Scholar 

  • Hudak AT. 1999. Rangeland mismanagement in South Africa: failure to apply ecological knowledge. Hum Ecol 27:55–78.

    Article  Google Scholar 

  • Isichei AO. 1980. Nitrogen fixation by blue-green algal soil crusts in Nigerian savanna. In: Rosswall T, Ed. Nitrogen cycling in West African ecosystems. Stockholm: Royal Swedish Academy of Sciences. p 191–8.

    Google Scholar 

  • Jewell PL, Kauferle D, Gusewell S, Berry NR, Kreuzer M, Edwards PJ. 2007. Redistribution of phosphorus by mountain pasture in cattle on a traditional the Alps. Agric Ecosyst Environ 122:377–86.

    Article  CAS  Google Scholar 

  • Kauffman JB, Cummings DL, Ward DE. 1994. Relationships of fire, biomass and nutrient dynamics along a vegetation gradient in the Brazilian Cerrado. J Ecol 82:519–31.

    Article  Google Scholar 

  • Kauffman JB, Cummings DL, Ward DE, Babbitt R. 1995. Fire in the Brazilian Amazon: 1. Biomass, nutrient pools, and losses in slashed primary forests. Oecologia 104:397–408.

    Article  Google Scholar 

  • Klötzli F. 1980. Analysis of species oscillations in tropical grasslands in Tanzania due to management and weather conditions. Phytocoenologia 8:13–33.

    Google Scholar 

  • Laclau JP. 2003. Nutrient cycling in a clonal stand of Eucalyptus and an adjacent savanna ecosystem in Congo 2. Chemical composition of soil solutions. For Ecol Manag 180:527–44.

    Article  Google Scholar 

  • Laclau JP, Ranger J, Deleporte P, Nouvellon Y, Saint-Andre L, Marlet S, Bouillet JP. 2005. Nutrient cycling in a clonal stand of Eucalyptus and an adjacent savanna ecosystem in Congo 3. Input-output budgets and consequences for the sustainability of the plantations. For Ecol Manag 210:375–91.

    Article  Google Scholar 

  • Laclau JP, Sama-Poumba W, Nzila JD, Bouillet JP, Ranger J. 2002. Biomass and nutrient dynamics in a littoral savanna subjected to annual fires in Congo. Acta Oecol 23:41–50.

    Article  Google Scholar 

  • Lamoot I, Callebaut J, Degezelle T, Demeulnaere E, Laquière J, Vandenberghe C, Hoffmann M. 2004. Eliminative behaviour of free-ranging horses: do they show latrine behaviour or do they defecate where they graze? Appl Anim Behav Sci 86:105–21.

    Article  Google Scholar 

  • Langkamp PJ, Swinden LB, Dalling MJ. 1979. Nitrogen fixation (acetylene reduction) by Acacia pellita on areas restored after mining at Groote Eylandt, Northern Territory. Aust J Bot 27:353–61.

    CAS  Google Scholar 

  • Le Roux X, Mordelet P. 1995. Leaf and canopy CO2 assimilation in a West African humid savanna during the early growing season. J Trop Ecol 11:529–45.

    Article  Google Scholar 

  • Ludwig F, de Kroon H, Berendse F, Prins HHT. 2004. The influence of savanna trees on nutrient, water and light availability and the understorey vegetation. Plant Ecol 170:93–105.

    Article  Google Scholar 

  • McNaughton SJ. 1985. Ecology of a grazing ecosystem: the Serengeti. Ecol Monogr 55:259–94.

    Article  Google Scholar 

  • McNaughton SJ, Banyikwa FF, McNaughton MM. 1997. Promotion of the cycling of diet-enhancing nutrients by African grazers. Science 278:1798–800.

    Article  PubMed  CAS  Google Scholar 

  • McNaughton SJ, Banyikwa FF, McNaughton MM. 1998. Root biomass and productivity in a grazing ecosystem: the Serengeti. Ecology 79:587–92.

    Article  Google Scholar 

  • Medina E. 1987. Nutrients: requirements, conservation and cycles in the herbaceous layer. In: Walker BH, Ed. Determinants of tropical savannas. Oxford: IRL Press. p 39–65.

    Google Scholar 

  • Medina E, Bilbao B. 1991. Significance of nutrient relations and symbiosis for the competitive interaction between grasses and legumes in tropical savannas. In: Esser G, Overdieck D, Eds. Modern ecology: basic and applied aspects. Amsterdam: Elsevier. p 295–319.

    Google Scholar 

  • Montes R, San Jose JJ. 1989. Chemical composition and nutrient loading by precipitation in the Trachypogon savannas of the Orinoco llanos, Venzuela. Biogeochemistry 7:241–56.

    Article  CAS  Google Scholar 

  • Morse D, Head HH, Wilcox CJ, van Horn HH, Hissem CD, Harris B. 1992. Effects of concentration of dietary phosphorus on amount of and route of excretion. J Dairy Sci 75:3039–49.

    Article  PubMed  CAS  Google Scholar 

  • Ojima DS, Schimel DS, Parton WJ, Owensby CE. 1994. Long-term and short-term effects of fire on nitrogen cycling in tallgrass prairie. Biogeochemistry 24:67–84.

    Article  Google Scholar 

  • Raison RJ, Khanna PK, Woods PV. 1985. Mechanisms of Element Transfer to the Atmosphere During Vegetation Fires. Can J For Res 15:132–40.

    Article  CAS  Google Scholar 

  • Reich PB, Peterson DW, Wedin DA, Wrage K. 2001. Fire and vegetation effects on productivity and nitrogen cycling across a forest-grassland continuum. Ecology 82:1703–19.

    Google Scholar 

  • Reid RS, Ellis JE. 1995. Impacts of pastoralists on woodlands in south Turkana, Kenya: livestock-mediated tree recruitment. Ecol Appl 5:978–92.

    Article  Google Scholar 

  • Rossiter-Rachor NA, Setterfield SA MDM, Hutley LB, Cook GD. 2008. Andropogon gayanus (Gamba grass) invasion increases fire-mediated nitrogen losses in the tropical savannas or Northern Australia. Ecosystems 11:77–88.

    Article  CAS  Google Scholar 

  • Ruess RW, McNaughton SJ. 1987. Grazing and the dynamics of nutrient and energy regulated microbial processes in the Serengeti grasslands. Oikos 49:101–10.

    Article  Google Scholar 

  • Ruess RW, McNaughton SJ. 1988. Ammonia volatilization and the effects of large grazing mammals on nutrient loss from East African grasslands. Oecologia 77:382–6.

    Article  Google Scholar 

  • Sanginga N, Wirkom LE, Okogun A, Akobundu IO, Carsky RJ, Tian G. 1996. Nodulation and estimation of symbiotic nitrogen fixation by herbaceous and shrub legumes in Guinea savanna in Nigeria. Biol Fert Soils 23:441–8.

    Article  CAS  Google Scholar 

  • Sanhueza E, Crutzen PJ. 1998. Budgets of fixed nitrogen in the Orinoco savannah region: role of pyrodenitrification. Glob Biogeochem Cycles 12:653–66.

    Article  CAS  Google Scholar 

  • Scholefield D, Lockyer DR, Whitehead DC, Tyson KC. 1991. A model to predict transformations and losses of nitrogen in UK pastures grazed by beef cattle. Plant Soil 132:165–77.

    CAS  Google Scholar 

  • Scholes RJ, Archer SR. 1997. Tree-grass interactions in savannas. Annu Rev Ecol Syst 28:517–44.

    Article  Google Scholar 

  • Serca D, Delmas R, Le Roux X, Parsons DAB, Scholes MC, Abbadie L, Lensi R, Ronce O, Labroue L. 1998. Comparison of nitrogen monoxide emissions from several African tropical ecosystems and influence of season and fire. Glob Biogeochem Cy 12:637–51.

    Article  CAS  Google Scholar 

  • Singh RS, Srivastava SC, Raghubanshi AS, Singh JS, Singh SP. 1991. Microbial C, N and P in dry tropical savanna: effects of burning and grazing. J Appl Ecol 28:869–78.

    Article  Google Scholar 

  • Sprent JI, Geoghegan IE, Whitty PW, James EK. 1996. Natural abundance of 15N and 13C in nodulated legumes and other plants in the cerrado and neighbouring regions of Brazil. Oecologia 105:440–6.

    Article  Google Scholar 

  • Stelfox JB. 1986. Effects of livestock enclosures (bomas) on the vegetation of the Athi Plains, Kenya. Afr J Ecol 24:41–5.

    Article  Google Scholar 

  • Stock WD, Wienand KT, Baker AC. 1995. Impacts of invading N2-fixing Acacia species on patterns of nutrient cycling in 2 Cape ecosystems: evidence from soil incubation studies and 15N natural abundance values. Oecologia 101:375–82.

    Article  Google Scholar 

  • Stott P. 2000. Combustion in tropical biomass fires: a critical review. Prog Phys Geogr 24:355–77.

    Google Scholar 

  • Tamatamah RA, Hecky RE, Duthie HC. 2005. The atmospheric deposition of phosphorus in Lake Victoria (East Africa). Biogeochemistry 73:325–44.

    Article  CAS  Google Scholar 

  • Tobler MW, Cochard R, Edwards PJ. 2003. The impact of cattle ranching on large-scale vegetation patterns in a coastal savanna in Tanzania. J Appl Ecol 40:430–44.

    Article  Google Scholar 

  • Treydte AC, Bernasconi SM, Kreuzer M, Edwards PJ. 2006a. Diet of the common warthog (Phacochoerus africanus) on former cattle grounds in a Tanzanian savanna. J Mammal 87:889–98.

    Article  Google Scholar 

  • Treydte AC, Edwards PJ, Suter W. 2005. Shifts in native ungulate communities on a former cattle ranch in Tanzania. Afr J Ecol 43:302–11.

    Article  Google Scholar 

  • Treydte AC, Halsdorf SA, Weber E, Edwards PJ. 2006b. Habitat use of warthogs on a former cattle ranch in Tanzania. J Wildl Manag 70:1285–92.

    Article  Google Scholar 

  • Turner MD. 1998. Long-term effects of daily grazing orbits on nutrient availability in Sahelian West Africa: 2. Effects of a phosphorus gradient on spatial patterns of annual grassland production. J Biogeogr 25:683–94.

    Article  Google Scholar 

  • Van de Vijver CADM, Poot P, Prins HHT. 1999. Causes of increased nutrient concentrations in post-fire regrowth in an East African savanna. Plant Soil 214:173–85.

    Article  Google Scholar 

  • Villecourt P, Roose E. 1978. Charge en azote et en éléments minéraux majeurs des eaux de pluie, de pluviolessivage et de drainage dans la savane de Lamto (Côte d’Ivoire). Rev Ecol Biol Sol 15:1–20.

    CAS  Google Scholar 

  • Villecourt P, Schmidt W, Cesar J. 1980. Losses of ecosystem during bush fire (tropical savanna of Lamto, Ivory Coast). Rev Ecol Biol Sol 17:7–12.

    Google Scholar 

  • Yelenik SG, Stock WD, Richardson DM. 2004. Ecosystem level impacts of invasive Acacia saligna in the South African fynbos. Restor Ecol 12:44–51.

    Article  Google Scholar 

  • Young TP, Partridge N, Macrae A. 1995. Long-term glades in acacia bushland and their edge effects in Laikipia, Kenya. Ecol Appl 5:97–108.

    Article  Google Scholar 

Download references

Acknowledgments

We greatly acknowledge Thomas Kuster for his help with the combustion experiments, as well as Stephanie Halsdorf and Christoph Rohrer for collecting fresh dung of almost all herbivore species in Saadani, and for measuring the N and P concentrations in it. We thank Sabine Güsewell for statistical advice, and Michael Scherer-Lorenzen for helpful comments on the manuscript. We thank Prof. S. L. S. Maganga, Markus Schneider-Mmary, and the authorities of Saadani National Park for their logistical support in Tanzania, and Benjamin Donald, John Williams and Hamis Williams for their assistance in the field. This study was financed by the Swiss National Science Foundation grant No. 2-77502-04.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Patrick G. Cech.

Additional information

Author contributions

P.C., H.O.V., and P.E. designed the study and wrote the paper; P.C. performed the research and analyzed the data.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 487 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cech, P.G., Olde Venterink, H. & Edwards, P.J. N and P Cycling in Tanzanian Humid Savanna: Influence of Herbivores, Fire, and N2-Fixation. Ecosystems 13, 1079–1096 (2010). https://doi.org/10.1007/s10021-010-9375-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10021-010-9375-9

Keywords

Navigation