Skip to main content
Log in

Responses of Vegetation and Ecosystem CO2 Exchange to 9 Years of Nutrient Addition at Mer Bleue Bog

  • Published:
Ecosystems Aims and scope Submit manuscript

Abstract

Anthropogenic nitrogen (N) loading has the potential to affect plant community structure and function, and the carbon dioxide (CO2) sink of peatlands. Our aim is to study how vegetation changes, induced by nutrient input, affect the CO2 exchange of a nutrient-limited bog. We conducted 9- and 4-year fertilization experiments at Mer Bleue bog, where we applied N addition levels of 1.6, 3.2, and 6.4 g N m−2 a−1, upon a background deposition of about 0.8 g N m−2 a−1, with or without phosphorus and potassium (PK). Only the treatments 3.2 and 6.4 g N m−2 a−1 with PK significantly affected CO2 fluxes. These treatments shifted the Sphagnum moss and dwarf shrub community to taller dwarf shrub thickets without moss, and the CO2 responses depended on the phase of vegetation transition. Overall, compared to the large observed changes in the vegetation, the changes in CO2 fluxes were small. Following Sphagnum loss after 5 years, maximum ecosystem photosynthesis (Pgmax) and net CO2 exchange (NEEmax) were lowered (−19 and −46%, respectively) in the highest NPK treatment. In the following years, while shrub height increased, the vascular foliar biomass did not fully compensate for the loss of moss biomass; yet, by year 8 there were no significant differences in Pgmax and NEEmax between the nutrient and the control treatments. At the same time, an increase (24–32%) in ecosystem respiration (ER) became evident. Trends in the N-only experiment resembled those in the older NPK experiment by the fourth year. The increasing ER with increasing vascular plant and decreasing Sphagnum moss biomass across the experimental plots suggest that high N deposition may lessen the CO2 sink of a bog.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5

Similar content being viewed by others

References

  • Aerts R, Verhoeven JTA, Whigham DF. 1999. Plant-mediated controls on nutrient cycling in temperate fen and bogs. Ecology 80:2170–81.

    Article  Google Scholar 

  • Aerts R, Wallén B, Malmer N, de Caluwe H. 2001. Nutritional constraints on Sphagnum-growth and potential decay in northern peatlands. J Ecol 89:292–9.

    Article  CAS  Google Scholar 

  • Alm J, Sculman L, Walden J, Nykänen H, Martikainen PJ, Silvola J. 1999. Carbon balance of a boreal mire during a year with an exceptionally dry summer. Ecology 80:161–74.

    Article  Google Scholar 

  • Arens SJT, Sullivan PF, Welker JM. 2008. Nonlinear responses to nitrogen and strong interactions with nitrogen and phosphorus additions drastically alter the structure and function of a high arctic ecosystem. J Geophys Res 11:G03S09. doi: 10.1029/2007JG000508.

  • Bartsch I. 1994. Effects of fertilization on growth and nutrient use by Chamaedaphne calyculata in a raised bog. Can J Bot 72:323–9.

    Article  Google Scholar 

  • Basiliko N, Moore T, Jeannotte R, Bubier JL. 2006. Nutrient input and carbon and microbial dynamics in an ombrotrophic bog. Geomicrobiol J 23:531–43.

    Article  CAS  Google Scholar 

  • Baxter R, Emes MJ, Lee JA. 1992. Effects of experimentally applied increase in ammonium on growth and amino-acid metabolism of Sphagnum cuspidatum Ehrh. Ex. Hoffm. from differently polluted areas. New Phytol 120:265–74.

    Article  CAS  Google Scholar 

  • Berendse F, Breemen N, Rydin H, Buttler A, Heijmans M, Hoosbeek MR, Lee JA, Mitchell E, Saarinen T, Vasander H, Wallen B. 2001. Raised atmospheric CO2 levels and increased N deposition cause shifts in plant species composition and production in Sphagnum bogs. Glob Change Biol 7:591–8.

    Article  Google Scholar 

  • Bragazza L, Tahvanainen T, Kutnar L, Rydin H, Limpens J, Hájek M, Grosvenier P, Hájek T, Hajkova P, Hansen I, Iacumin P, Gerdol R. 2004. Nutritional constraints in ombrotrophic Sphagnum plants under increasing atmospheric nitrogen deposition in Europe. New Phytol 163:609–16.

    Article  Google Scholar 

  • Bragazza L, Freeman C, Jones T, Rydin H, Limpens J, Fenner N, Ellis T, Gerdol R, Hájek M, Hájek T, Iacumin P, Kutnar L, Tahvanainen T, Toberman H. 2006. Atmospheric nitrogen deposition promotes carbon loss from peat bogs. Proc Natl Acad Sci 103:19386–9.

    Article  PubMed  CAS  Google Scholar 

  • Bubier JL, Bhatia G, Moore T, Roulet TR, Lafleur PM. 2003. Spatial and temporal variability in growing season net ecosystem carbon dioxide exchange at a large peatland in Ontario, Canada. Ecosystems 6:353–67.

    CAS  Google Scholar 

  • Bubier JL, Moore TR, Crosby G. 2006. Fine-scale vegetation distribution in a cool temperate peatland. Can J Bot 84:910–23.

    Article  Google Scholar 

  • Bubier JL, Moore TR, Bledzki LA. 2007. Effects of nutrient addition on vegetation and carbon cycling in an ombrotrophic bog. Glob Change Biol 13:1168–86.

    Article  Google Scholar 

  • Canadian Climate Normals 1971–2000. Canada’s National Climate Archive. http://climate.weatheroffice.ec.gc.ca/climate_normals.

  • Chapin CT, Bridgham SD, Pastor J. 2004. pH and nutrient effects on above-ground net primary production in a Minnesota, USA bog and fen. Wetlands 24:186–201.

    Article  Google Scholar 

  • Clymo RS, Hayward PM. 1982. The ecology of Sphagnum. In: Smith AJE, Ed. Bryophyte ecology. London: Chapman and Hall. p 229–89.

    Google Scholar 

  • Douma JC, van Wijk MT, Lang SI, Shaver GR. 2007. The contribution of mosses to the carbon and water exchange of arctic ecosystems: quantification and relationships with system properties. Plant Cell Environ 30:1205–15.

    Article  PubMed  CAS  Google Scholar 

  • Gerdol R, Bragazza L, Brancaleoni L. 2008. Heatwave 2003: high summer temperature, rather than experimental fertilization, affects vegetation and CO2 exchange in an alpine bog. New Phytol 179:142–54.

    Article  PubMed  CAS  Google Scholar 

  • Gorham E. 1991. Northern peatlands: role in the carbon cycle and probable responses to climatic warming. Ecol Appl 1:182–95.

    Article  Google Scholar 

  • Gruber N, Galloway JN. 2008. An Earth-system perspective of the global nitrogen cycle. Nature 451:93–296.

    Article  CAS  Google Scholar 

  • Gunnarsson U, Boresjö Bronge LJ, Rydin H, Ohlson M. 2008. Near-zero recent carbon accumulation in a bog with high nitrogen deposition in SW Sweden. Glob Change Biol 14:2152–65.

    Article  Google Scholar 

  • Heijmans MPD, Berendse F, Arp WJ, Masselink ABK, Klees H, de Visser W, van Breemen N. 2001. Effects of elevated carbon dioxide and increased nitrogen deposition on bog vegetation in the Netherlands. J Ecol 89:268–79.

    Article  CAS  Google Scholar 

  • Hobbie S, Nadelhoffer KJ, Högberg P. 2002. A synthesis: the role of nutrients as constraints on carbon balances in boreal and arctic regions. Plant Soil 242:163–70.

    Article  CAS  Google Scholar 

  • Johnson LC, Shaver GR, Cades DH, Rastetter E, Nadelhoffer K, Giblin A, Laundre J, Stanley A. 2000. Plant carbon-nutrient interactions control CO2 exchange in Alaskan wet sedge tundra ecosystems. Ecology 81:453–69.

    Google Scholar 

  • Jonasson S, Castro J, Michelsen A. 2004. Litter, warming and plants affect respiration and allocation of soil microbial and plant C, N and P in arctic mesocosms. Soil Biol Biochem 26:1129–39.

    Article  CAS  Google Scholar 

  • Lafleur PM, Roulet NT, Bubier JL, Frolking S, Moore TR. 2003. Interannual variability in the peatland-atmosphere carbon dioxide exchange at an ombrotrophic bog. Global Biogeochem Cycles 17:1036. doi:10.1029/2002GB001983.

    Article  CAS  Google Scholar 

  • LeBauer DS, Treseder KK. 2008. Nitrogen limitation of net primary productivity in terrestrial ecosystems is globally distributed. Ecology 89:371–9.

    Article  PubMed  Google Scholar 

  • Limpens J, Berendse F. 2003. Growth reduction of Sphagnum magellanicum subjected to high nitrogen deposition: the role of amino acid nitrogen concentration. Oecologia 135:339–45.

    PubMed  CAS  Google Scholar 

  • Limpens J, Raymakers HTAG, Baar J, Berendse F, Zijlstra JD. 2003. The interaction between epiphytic algae, a parasitic fungus and Sphagnum as affected by N and P. Oikos 103:59–68.

    Article  Google Scholar 

  • Limpens J, Berendse F, Klees H. 2004. How phosphorus availability affects the impact of nitrogen deposition on Sphagnum and vascular plants in bogs. Ecosystems 7:793–804.

    Article  CAS  Google Scholar 

  • Limpens J, Berendse F, Blodau C, Canadell JG, Freeman C, Holden J, Roulet N, Rydin H, Schaepman-Strub G. 2008. Peatland and the carbon cycle: from local processes to global implications—a synthesis. Biogeosciences 5:1475–91.

    Article  CAS  Google Scholar 

  • Lund M, Christensen TR, Mastepanov M, Lindroth A, Ström L. 2009. Effects of N and P fertilization on the greenhouse gas exchange in two northern peatlands with contrasting N deposition rates. Biogeosciences 6:2135–44.

    Article  CAS  Google Scholar 

  • Mack MC, Schuur EAG, Bret-Harte SM, Shaver GR, Chapin SFIII. 2004. Ecosystem carbon storage in arctic tundra reduced by long-term fertilization. Nature 431:440–3.

    Article  PubMed  CAS  Google Scholar 

  • Malmer N, Albinsson C, Svensson BM, Wallén B. 2003. Interferences between Sphagnum and vascular plants: effects on plant community structure and peat formation. Oikos 100:469–82.

    Article  Google Scholar 

  • Moore TR, Bubier JL, Frolking SE, Lafleur PM, Roulet NT. 2002. Plant biomass and production and CO2 exchange in an ombrotrophic bog. J Ecol 90:25–36.

    Article  Google Scholar 

  • Moore TR, Lafleur PM, Poon DMI, Heumann BW, Seaquist JW, Roulet NT. 2006. Spring photosynthesis in a cool temperate bog. Glob Change Biol 12:2323–35.

    Article  Google Scholar 

  • Moore TR, Bubier JL, Bledzki L. 2007. Litter decomposition in temperate peatland ecosystems: the effect of substrate and site. Ecosystems 10:949–63.

    Article  Google Scholar 

  • Nadelhoffer KJ, Johnson L, Laundre J, Giblin AE, Shaver GR. 2002. Fine root production and nutrient content in wet moist arctic tundra as influences by chronic fertilization. Plant Soil 242:107–13.

    Article  CAS  Google Scholar 

  • Riutta T, Laine J, Tuittila E-S. 2007a. Sensitivity of CO2 exchange of a fen ecosystem components to water level variation. Ecosystems 10:718–33.

    Article  CAS  Google Scholar 

  • Riutta T, Laine J, Aurela M, Rinne J, Vesala T, Laurila T, Haapanala S, Pihlatie M, Tuittila ES. 2007b. Spatial variation in plant community functions regulates carbon gas dynamics in a boreal fen ecosystem. Tellus 59B:838–52.

    CAS  Google Scholar 

  • Roulet NT, Lafleur PM, Richard PJH, Moore TR, Humphreys ER, Bubier J. 2007. Contemporary carbon accumulation and late Holocene carbon accumulation in a northern peatland. Glob Change Biol 12:1–15.

    Google Scholar 

  • Rydin H, Jeglum J. 2006. The biology of peatlands. Oxford: Oxford University Press.

    Book  Google Scholar 

  • Saarnio S, Järviö S, Saarinen T, Vasander H, Silvola J. 2003. Minor changes in vegetation and carbon gas balance in a boreal mire under a raised CO2 or NH4NO3 supply. Ecosystems 6:46–60.

    Article  CAS  Google Scholar 

  • Shaver GR, Giblin AE, Nadelhoffer KJ, Thieler KK, Downs MR, Laundre JA, Rastetter EB. 2006. Carbon turnover in Alaskan tundra soils: effects of organic matter quality, temperature, moisture and fertilizer. J Ecol 94:740–53.

    Article  CAS  Google Scholar 

  • Shaver GR, Chapin FSIII. 1980. Response to fertilization by various plant growth forms in an Alaskan tundra: nutrient accumulation and growth. Ecology 61:662–75.

    Article  CAS  Google Scholar 

  • Silvola J, Aaltonen H. 1984. Water content and photosynthesis in the peat mosses Sphagnum fuscum and S. angustifolium. Ann Bot Fenn 21:1–6.

    Google Scholar 

  • Street LE, Shaver GR, Williams M, van Wijk MT. 2007. What is the relationship between changes in canopy leaf area and changes in photosynthetic CO2 flux in arctic ecosystems? J Ecol 95:139–50.

    Article  Google Scholar 

  • Tomassen HBM, Smolders AJP, Limpens J, Lamers LPM, Roefols JGM. 2004. Expansion of invasive species on ombrotrophic bogs: desiccation or high N deposition. J Appl Ecol 41:139–50.

    Article  CAS  Google Scholar 

  • Turetsky MR. 2003. The role of bryophytes in carbon and nitrogen cycling. Bryologist 106:395–409.

    Article  Google Scholar 

  • Turunen J, Roulet NT, Moore TR. 2004. Nitrogen deposition and increased carbon accumulation in ombrotrophic peatlands in eastern Canada. Glob Biogeochem Cycles 18:GB2003. doi: 10.1029/2003GB002154.

  • Van Wijk MT, Clemmensen KE, Shaver GR, Williams M, Callaghan TV, Chapin FSIII, Cornelissen JHC, Gought L, Hobbie SE, Jonasson S, Lee JA, Michelsen A, Press MC, Richardson SJ, Rueth H. 2003. Long-term ecosystem level experiments at Toolik lake, Alaska, and at Abisko, northern Sweden: generalizations and differences in ecosystem and plant type responses to global change. Glob Change Biol 10:105–23.

    Article  Google Scholar 

  • Vitt DH, Wieder K, Halsey LA, Turetsky M. 2003. Response of Sphagnum fuscum to nitrogen deposition: a case study of ombrogenous peatlands in Alberta, Canada. Bryologist 106:235–45.

    Article  Google Scholar 

  • Waldrop WP, Firestone MK. 2004. Altered utilization patterns of young and old soil C by microorganisms caused by temperature and shifts and N additions. Biogeochemistry 67:235–48.

    Article  CAS  Google Scholar 

  • Wiedermann MM, Nordin A, Gunnarsson U, Nilsson MB, Ericson L. 2007. Global change shifts vegetation and plant-parasite interactions in a boreal mire. Ecology 88:454–64.

    Article  PubMed  Google Scholar 

  • Wiedermann MM, Gunnarsson U, Nilsson MB, Nordin A, Ericson L. 2009. Can small-scale experiments predict ecosystem responses? An example from peatlands. Oikos 118:449–56.

    Article  Google Scholar 

Download references

Acknowledgements

We thank the National Science Foundation for the award DEB 0346625 to Jill Bubier, and the Natural Sciences and Engineering Research Council Discovery for grants to Tim Moore, and the National Capital Commission for access to the Mer Bleue. We thank Peter Lafleur and Elyn Humphreys for sharing data from the eddy covariance tower and we thank Leszek Bledzki, Mike Dalva and Meaghan Murphy for assistance in the field and laboratory. The valuable help of many Mount Holyoke College, McGill University and Carleton University students in collecting the field data is acknowledged. The comments of two anonymous reviewers and Gaius Shaver greatly improved the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sari Juutinen.

Additional information

Author contributions

SJ conducted the research and analyzed the data. JLB and TRM conceived the study and conducted the research, and all three wrote the paper.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Juutinen, S., Bubier, J.L. & Moore, T.R. Responses of Vegetation and Ecosystem CO2 Exchange to 9 Years of Nutrient Addition at Mer Bleue Bog. Ecosystems 13, 874–887 (2010). https://doi.org/10.1007/s10021-010-9361-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10021-010-9361-2

Keywords

Navigation